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PREFACE. )

N

THE prosent werk is constructed on the same pl'axyfas ‘my
treatise on Plaue Trigonometry, to which it is imﬁﬁdcd as 4
sequel ; it contains all the propositions usually mciuded under
the head of Spherical Trigonometry, tomethér with u large
collection of examples for exercise. [n‘th} course of the work
reference iz made to preceding wrlter:s from whom assistance
has heen obtained ; besides these( \-UILBT‘S I have eonsulted the
treatises on Trigonometry hy L&rdnm Lefebure de Fourcy,
and Snowball, and the Trcat]se on Geometry published in tha
Library of Uscful hnowl‘sd ga.  The examples have been chicfly
selected from the I\lg\w ersrty and College xamination Papers.
In the accouhb of Napier's Rules of Circular Parts an
cxplanation h]f)s;f heen given of a method of proof devised by
Napier,.}ﬁ\*li}eﬁ seems to have heen overlooked by most modorn
write\-,%on” the subject. T have had the advantage of access to
ansinprinted Memoir on this point by the late R. L. Ellis, of
2\ ;I}:ihiby College ; Mr. Ellis had in fact rediscovered for himself
\/ Napier’s own method. For the use of this Momoir and for
some valuable reforences on the subject I am indebted to the
Dean of Ely.



vi PREFACE,

Considerable labour has been bestowed on the text in
order to render it comprehensive and accurate, and the ex-
amples have all been carefully verified ; and thus [ venture
te hope that the work will be found usuful by Students cuuk
Teachers,

I TODHUN’]@R‘(})
8r. Joun's COLLEGE, Q\X
August 15, 1359, g(/
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BEVISER'S PREFACE. A\
| g 9

I¥ the present revision of Dr. TorHUNTER'S" Spherical
Trigonometry so many changes have been piade that only a
comparatively small portion of the last ediﬁon reraains in its
original form. The introductory chsgpt‘éi'; and the chapters on
(Gtoodetical Operations and on Polyhédrons are almost un-
touched, and in the chapter on, aAI‘CS Drawn to Fixed Points
only one paragraph has bee,n altered. But that part of
the book which deals with the Formulue of tho Triangle and
the Solution of Tn.,mo'i\ has been re-written, and the remain-
ing chapters 1ncluﬂg\extensne alterations and additions.

I have followkdtho example of the late Dr. CASEY in intro-
duving chapt(:}rs'zon Spherical Geometry, and [ am indebted to
his Spkfé"z}zi Trigonometry, and to BALTZER'S Elemenfe der
ﬂftif@?&dﬁ]ﬂ, for references to the important writings on the
subject. Passing over, however, a number of geometrical

- "R\ethods of considerable interest but of restricted application,
\/ T have given the central place in the present edition to
the Principle of Duality as exemplified in theorems relating
Jfo circles on the sphere. Though the principle and some of
its applications to Spherical Geomeotry have been known for

2\
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viii PREFACE,

a long time, I have not found any connected account of the
subject, such as s contained in Chapter X.

Coaxal circles have been discussed in such a way as to shew
their analogy with coaxal circles on a plane ; and the coaxal sys-¢
tem and the reciprocal of a coaxal system, to which I haye
given the name colunar, are selected as examples of l}l@l}f}\;
partly because the properties of the latter afford, &” new
ireatment of HARTS Theorem, but chiefly becatfsie, oh tran-
sition to the plane, they present an intgvefsﬁng relation
between systems of eircles on the plane, posdessed in the one
case of a common radical axis, in b];e’,\étiler of a common
centre of similitude.* AN

A chapter has been devoted _téh. the generalization of the
Spherical Triangle, based on8° recent  memoir by Dr E.
STUDY ; and another gives pdbmef account of Prof. FROBENIUS'S
applieation of detormigants to the geomotry of the sphers
AN

*In this cunnex}u\l a remark, which it is now too late to insert in
its natural placg in the text, may be made here.
Just as thé tonstant of Art. 169 is called the Spherical Power of

the point wish respect to the small circle, 5o the constent of Art. 171

may be‘ealled the Spherical Power of the great circle with respect

to thd small circle. (If the grest and the small circle intersect at

an{angle ¢, the spherical power is equal to tan?i¢p.) Then, ag the
Jadical circle of two small circles is the Zorus of points whose spherical
“\Powers with respect to them are equal, the centre of similitude of two
" small circles is the envelope of great circles whose spherical powers
with respect to them are equal. Of course by the centre of similitude
of two circles is meant the external or the internal centre of similitnde,
according as the eireles have the same or opposite senses of rotation
assigned to them. This view of centres of similitude completes the

analogy between coaxal and colunar circles, whether on a sphere or
on a plane,




PREFACE. ix

In both these chapters special attention has been paid to the
conventions used for the purpose of avoiding ambignity, It
18 hoped that a suffielent omphasis has thus been laid on the
importanee of assigning to every ecircle a certain direction and
a unique pole, a method whose utility has heen exemplified
also in Chapter X, L\

Some examples have been added, taken, for the most pa.ft}
from the papers of tho Science and Art: Examinations and ‘of
the Royal University of Ireland; a few are from’gimlﬁl"s
collection, N \:\}

My very gratefnl acknowledgments are gix(é)to Mr. T. J.
FAxson BroMwict, for his help in reaad‘i\hé\ proofs, and for
many most valuable suggestions. AN

o\ J. @ LEATHEM.
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SPHERICAL TRIGONOMETRY:

,\uf‘s

CHAPTER L @

N
GREAT AND SMALL CTRCLESY

\Y;

1. Definition. A sphere is a solid lLodydoed by a surface
every point of whick is equally disbant” from s fixed point
which Is called She cendre of the sphére. The straight line
which joins any point of the suifiice with the centre is callod
a radius. A straight line glf'gt%vn throngh the centre and
terminated both ways by th&surface is called a diameter,

2. The section of Hu;@ﬂzce of u sphere made by any plane is
3

a circle, ¢\
£ \\

Let AB be the section of the surface of a sphere made by
any plane, O the centre of the sphere. Draw OC perpendicular
&



9 SPHERICAL TRIGONOMETRY. (§2

to the plane ; take any poiut D in the section and juin 0D,
CD. Binee OC is perpendicular to the plane, the angle ocp
is a right angle ; therefore CD=,/(OD? - 0c%). Now O and €
are fixed points, so that OC is constant ; and OD is constant, _
being the radius of the sphers ; hence CD is constant, Thus
all points in the plane section are equally distant from (the
fixed point C; therefore the section is a cirele of whigh\C “fs
the ceutrs, QA

3. Definitions. The section of the surface gf@ﬁs{phere by a
plano is called a great circle if the plane paSsgs through the
centre of the sphere, and a small eircle iéttlhc plane does not
pass through the centre of the sphere, ©/Fhus the radius of a

great cirele is equal to the radins of ,th} sphere.

-4, Through the centre of a sphere and any two points on
the surface.a plane can he drawi ; and only one plane can be
drawn, except when the &% points are the extremities of 4
diameter of. the sphetg, and then an infinite number of such
1__)__1&_1135_ cun ho d.rs_.mn: Hence oniy one great circle can be
drawn through two. given points on the surface of a sphere,
exeept whon qhe\points are the extremitics of a diameter of
the sphere, .. When only ono great circle can be drawn through
two givep'points, the great circle is unequally divided at the
two }‘:Ef:ﬁ:té ; wo shall for brevity speak of the shorter of the
tw'l{\hrcs as the arc of a great circle joining the two points.

2 S

) ‘\'f 9. Dofinitions. : The axis of any circle of a sphere is that
~\J diameter of the sphere which is perpendicular to the plane of
/' the circle; the extremifies of the axis are called the poles*® of
the circle. The poles of a great circle are equally distant
from the plane of the circle. ‘The poles of a small circle are

__'I*:Tl;e; éx-pression polz of u cirrlé is uged by Arcmmmepres (287-
212 Bo.} - )



§6] GREAT AND SMALL CIRCLES. 3

not equally distant from the plane of the circle ; they may be
called rospectively the nearer and the further pole ; sometimes
the nearer pole is for brevity called #e pole.

6. A pole of a cirele is equally distont from every point of the N
cireumference of the circle. .

Let O be the centre of the sphere, AB any eircle of the\
sphere, C the contre of the circle, P and P the poles of the
cirele.  Take any point D in the eircumference of whe clrcle
join €0, OD, PD. Then PD=,/{PC2+CD?}; and’ E’C and CD
are constant, therefore PD is constant. Suppcnse 8 great circle
to pass through the points P and D; thenthe chord PD is
constant, and therefore the arc of a g;'em}mrcle intercepted
between P and D is constant for alipositions of D on the
circle AB. o\

% "Thus the distance of a pole of a circle from every point of
\. “the circamference of the circle is constant, whether that
V' distance be measured by the straight line joining the points,

or by the are of a great circle intercepted between the points.

Definition. The length of the arc, measured along a great
cirele, from any point on 4 small circle to the nearer pole is
called the spherical rudius of the small circle. . ;



4 SPHERICAL TRIGONOMETRY. 7

7. The arc of a great cirele which is drawn Jrom a pols of a
great cirele s any poinf n is circumference is a quadrant.

Let P he a pole of the great circle ABC; then the arc PA is
& quadrant,
N
P -

N 3
/ )
o \

 §

N/

2%4
&/
\ \\
\/

A p

N
For let O be the centre of the sphere,'and draw PO. Then
PO is at right angles to the plane;A?Cﬁ because P is the pole

3 £
of ABC; thercfore POA is a rightiangle, and the are PA is a
quadrant. ( gass Srakom) oL

LN

8. The angle subtended af'the centre of & sphere by the are of a
great circle which joins #Z{é\q)azgs of two grent circles 4s equal fo the

inclination of the p&{&g}ﬂf the great circles.

Let © be the centre of the sphere, CD, CE the great circles
intersecting at C, A and B the poles of CD and CE respectively,
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Draw a great circle throngh A and B, meeting CD and CE
at M and N respectively. Then AO is perpendicular to OC,
which is a straight line in the plane 0CD; and BO is per-
pendicular to OC, which is a straight line in the plane OCE;
therefore OC is perpendicular to the planc AQB (Euclid, x1, 4);
and therefore OC is perpendicular to the straight lines oM
and ON, which are in the planc AOB. Hence MON is the g-nél‘e'.\
of inelination of the planes OCD and OCE. And M

A A A A A AL N
AOB=AOM - BOM = BON — BOM = MOI{§'~

9. Definition. When two circles intersect, tha aﬁgle between
the tangents at either of their points of erer‘scction is called
the angle hetwoen the cireles, RS

The angle of infersection of hwo ghedl circles is equal fo the
inclination of their planss. A N/

For, in the figure of tho preceding Article, the tangents at C
to the circles CD and GE, lying'in the planes of these circles
respoctively, are perpendiculir to their common radius OC,
which is the line of jntérsection of the plancs. Henee the
angle hetween the téngénts is the angle of inclination of the
planes. \\ )

In the figure'wf Art. 6, since PO is perpendienlar to the
planc ACB; .e\'ei"} plane which contains PO is at right angles
to the plame/ACB. ITence the angle between the plane of any
civcle gtd*the Plane of a great circle which passes through its
pD.le'f;X“a right angle.

&

§ \ 10. Two great circles bisect each other.

s

For since the plane of each great circle passes through the
eentre of the sphere, the line of interscetion of these planes is
& diameter of the sphere, and therefore also a diameter of each
great circle; therefore the great circles are bisected at the
points wherc they meet.
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o\ 14 7o compare the are of & small circle sublending any angle
4 ¢\' ¢

6 SPHERICAL TRIGONOMETRY. 511

11, If the arcs of great eireles Joining a point P on the surface
of & sphere with two other points A and G on the surfare tf the
sphere, which are mol at opposile extromitics of « dinmeter, bz eoch
of them equal lo o quadrant, P is o ole of the great circle through
Aand C. (Seo the figure of Art. 7. ~

For suppose PA and PC to ba quadrants, and O the centrabf
the sphore; then since PA and PC aro guadrants, the '{131;31&3
POC and POA are right angles. Hence PO is at righi angles
to the plane AOC, and Pis 4 pole of the great cirgld}‘{fkc.

12. Definition. Great circles which pass thifeligh the poles
of & great circle ave calied seconduries to thateircle,  Thus, in
the figure of Art. & the point C is a pal®nf ABMN, and thoere-
fore CM and ©N aro parts of seconddries to ABMN. And the
angle between CM and CN is mefsired by MN; that is, e
angle betwoen any fun great cirelgsyis measured by the ure they
wldercepl on the great cirele fo ;qfﬁch they are secondaries. :

13. If from a point oh e surface of @ sphere there can be
drawn two ares of greak ’ca';'cles, nol parts of the same great circle,
the plames of which @re. it right angles fo the plane of o given circle,
that point is o polk, gf the given cirele,

For, since’t planes of those ares are at right angles to the
Plane of fhedgiven circle, the line in which they intersect is
perpendigular to the plane of the given circle, and is thersfore

thg 7 of the given cirele: heneo the point from which the
a{z-s\]l‘c drawn is a pole of the circle.
A

at the centre of the circle with fhe are of @ great circle sublending
the same angle ot its contre,

Let «b be the arc of a small circle, C the centre of the cirele,
P the pole of the circle, O the centre of the sphere. Through
P draw the great circles Paa and P68, mesting the greas circle
of which P is a pole at A and B respectively; draw. Ca, Ch, OA,
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DB. Then Ca, Ch, .OA, OB arc all perpendicnlar to OP, because
the planes aCh and AOB are perpendicular to OP; therefore

L\
o
N
D

Ca iz parallel to OA and Cb is parallel to 03\\ herefore tho
angle aCh = the angle AOB (Euelid, x1, 10),\\>Ience,

&
are ab arc AB {Plane Tg@}nemy, Art, 18);

radius Ce  radins OA

& ) arcab Ca QRN', A
therefore, . m@=a%§ = sin POg.
\3§‘

&
0
O
(\J‘v’
Q’o
S

AN

”\{:}fk |
\'4



CHAPTER IL N
NS ¥
SPHERICAL TRIANGLES.
N

15, Spherical Trigonometry investigates thé @lations which
subgist betwesn the angles of the plane fadds which form a
solid angle and the angles at which bhe{lgne faces are inclined
ta each other, 9, \d

7
W

16. Spherical Triangle. Suppdsé that the angular point of
a solid angle is made the cex;tré“(’;f’ a sphere ; then the planes
which form the solid anglg @il cut the sphere in ares of great
circles. Thus a figure will 'he formed on the surface ot the
sphere, which is called g spherical trigngle if it is bounded by
three arcs of great cirtles ; this will be the case when she solid
angle is formed giﬁy the meeting of firee plane angles.  Tf the
solid angle be'formed by the meeting of wore than threr plane
angles, th'g:.é’orrcsponding figure on the surface of the sphere
is bonndet) "by more than three ares of great circles, and is
eulle:(%\:aﬁa?pkrffriml polygen,

\Q
{ sps - . - .
N7, Definitions. The three ares of great circles which form
«\'a spherical triangle are called the sides of the spherical
/% triangle; the angles formed hy the ares at the points where

\\ * they mect are called the angles of the splerieal triangle.
(See Art. 9.)

18, Thus, let O be the centre of g sphere, and suppose a
solid angle formed at O by the meeting of thres plane angles.



N

“measured by the fraction

mJ

§19] " SPHERICAL TRIANGLES, 9

Lot AB, BC, CA be the arcs of great circles in which the planes
cut the sphere ; then ABC is a spherical triangle, and the arcs
AB, BC, CA are its sides. Suppose Ab the tangent at A to the
arc AB, and Ac the tangent at A to the arc AC, the tangernts

A
: N
AN
\ NS ©
L 3 N
[+ W\

0 e 40N

being drawn from A #wards B and c r@pectn ely ; then the
angle bAc is one of the angles of\thc spherical iriangle,
Sitilarly angles formed in likc thawher at B and C are the
other angles of the spherical tmangle

19. The prineipal part nf A trcatlge on Spherical Trigono-
metr) ennsists of themems relating to spherical tnangleq i it
is thercfore necessar¥ o obtain an accurate conccption of a
spherical triangle@nd its parts.

It will be sgg\t that what aro called sides of a spherical
triangle are beally arcs of great circles, and these aves are
proportiondl to the three plane angles which form the solid
angle BTt esponding to the sphericul triangle. Thus, in the
figurd) of the preceding Article, the arc AB forms one side of

e spherical triangle ABC, and the plane angle ADB is

arc AB
radins OA’
is proportional to the angle AOB so long as we keop to the
same sphere.

And from the proposition proved in Article 9 it follows
that the angles of a spherical triangle are the same as the
inclinations of the plane faces that form the solid angle.

and thus the are AB



10 SPHERICAL TRIGONOMETRY, 1§ 20

20. Notation, The letters A, B, C are generally used to
denote the angles of a spherical triangle, and the letters
@ b, ¢ are used to denote the sides. As in the case of plane
triangles, A, B, and © may be used to denote the umumerical
values of the angles exprossed in feyms of uny wnif, provided ses
understand distinctly what the unit is, Thus, if the m)gi\e.c
be a right angle, weo may say that C=90°, or that €%,
according as we adopt for the unit a degree or, the angle
subtended at the centre of a cirelo by an are &qnal to the
radius.  Bo also, as the sides of a spherieal Iziaﬁlgle are o
pertional to the augles subtended at the edntde of the sphere,
We may use ¢, b, ¢ to denote the numerisdl values of those
angles in terms of any unit. We shall\\i’sunlly shppose both
the angles and the sides of a sth}iEal friangle to be ex-
pressed in circular measure, (leﬁrj, Lrigonometry, Avt. 20.)

21. In futurs, unless the ;céh’tmry he distinetly stated, any
arc drawn on the surface™af”a sphere will be supposed io be
an arc of a great civele, “§°

22, Conventioga%\ restriction of lemgths of sides* In

L\

spherical triangles each side '_is restricted to be less than a
'"_-_'_-__'_‘_‘——-—. . . . .
*Bee Chapter xzx.*



§24] BPHERICAL TRIANGLES. 11

semicircle ; this is of course a comvention, and it is adopted,
for the present, partly because it is traditional and partly
becauso it simplifies the study of Spherical Trigonometry for
the heginner. :

Thus, in the figure, the are ADEB is greater thun a semi-
cireumference, and we might, if wo pleased, consider ADES, A
AC, and BC s forming a triangle, having its angular peints .z{t\“.
A, B, and C. But we agree to exclude such triangles from our
consideration ; and the triangle having its angular pélits at
A, B, and €, will be understood to be that formed b:(,ziFB, BC,
and CA. O

23. From the restrietion of the preceditizArticle it will
follow that any angle of @ sphevical triangleSesiess than fuo right
angles. ) C’ v/

For suppose a triangle formed b}{ng, CA, and BEDA, having
the angle BCA greater than two tight angles. Then the parts
of the arc BEDA, which are in(the immediate neighbourhoods
of Band of A respeetively, é}eﬁ-’r]y lic on opposite sides of the
plane of the great circl&\BC.. Hence the arc must cut this
plane; let it do sp if & point D; then D lies on the arc BC
producod. By Ar}x\ﬁ, BED is a somicirele, and therefore
BEA is greater, ,tlian a semicirclo ; thus the proposed triangle
is not one of ‘tHete which we consider.

N W

24, Th\é‘?elations hetween the sides and angles of a Spherieal
Trinngle,"which are investigated in treatises on Spherical Tri-
gqnb;netry, are chiefly such as involve the Trigonomefrical

. Piictions of the sides and angles. Before procecding to these,
‘:libwever, we shall consider some theorems which involve the
sides and angles themselves, and not their trigonometrical ratios,

Definitions. The following definitions are important.
A lune is that portion of the surface of a sphere which is
comprised between two great semicireles,
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12 SPHERICAT, TRIGONOMETRY, 1§24

Two trianglos, ABC, A’BG, which have a side o common,
and whose other sides belong to the same great circles, are
called colunar Iriungles, as they together make up a lune,
A" is the point diametrically opposite to A on the sphere. )

IfA", B", ¢ he diametrically Opposite to A, B, ¢ rospectivid y,\
the triangle ABC has three colunar triangles, namely,' {\"QC,
B"CA, and ¢"aB. A\

Antipodal triangles are triangles whoge respective Wertices
are diametrica]ly OPposite t0 one another in pa,tifvé’j"such, for
example, are the triangles ABG, A”B"(”. (¥

25, Polar triangle, * Tt ABC he any spHerical triangle,
and let the points A, B', ¢ be those peles/of the gres BC, CA,
AB respectively which le on the same“sides of them as the
Opposite angles A, B, C: then thé\briangle A'B'Q’ ;g said to be
the polar triangle of the trianglg~ABé.

W/
Since, &Bere are two poles for each side of & spherical
trianglel eiohs triangles can be formed having for their angular
poiﬁts Poles of the sides of the given triangla; byt there is

“this ia the triangle which i known under the name of the
polar triemgle.
* The discovery of the Polar trisngle is due tg BNELLIUS. Tis use iy
explained in his rigonumetria, (Lib, FII, Prop, VIII), published ab
Leyden in 1627,
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The triangle ABC is called the Primitive triangle with respect:
to the triangle A'BC.

28. If one triangls bs the polar lriangle of another, the latter
will be the polor Iriangle of the former. '

Lot ABC be any triangle, AR'C’ the polar triangle ; then ABCC,
will be the polar triangle of AB'C, N\

For since B' is a pole of AG, théarc AR’ s a quadrant, and
sinee C'is a pole of BA, the ATCVAC s a gquadrant (Art, 7);
therefore A is o pole of B'C"Art. 11). Also A and A are on
the samo side of B'C'; foh A and A" are by hypothesis on the
same side of BG, theraford A'A is less than a quadrant ; and
since A is a pole of B, and AA' is less than & quadrant, A and
A" are on the samé side of B'C',

Similarly ipnniay be shewn that B is a pole of C'A’, and that
B and B’ agesprt the same side of C'A’; also that G is a pole of
A'B', an ¢hat Cand C are on the same side of AR, Thus ABC
is the(p‘&n%ir triangle of A'B'C.

AT The sives and angles of the polar triangle are respectively
R supplements of the angles and sides of the primitive trigngle,

For let the are B'C’, produced if necessary, meet the arcs AB,

AG, produced if necessary, at the points D and E respectively ;

then since Ais a pole of B'C/, the spherical angle A is measnred

by the arc DE (Art. 12). Bat B'E and ¢'D are sach quadrants ;

therefore DE and B'C’ are together equal to a semicirelo ; that
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is, the angle subtended by B'C’ at the centre of the sphere is
the supplement of the angle A 'This we may express for
shortness thus ; B'C’ is the supplement of A. Similarly it may
be shewn that C'A’ is the supplement of B, and A'B’ the supple-
ment of C. N\

And since ABC is the polar triangle of ARC, it followsuthat
BC, CA, AB are respectively the supplements of A, B, C{ that
is, A, B, C' are respectivoly the supplements of BC, G4/ AB.

From these properties a primitive triangle afithits polar
triangle are sometimes called supplemental trérmg{és.

Thus, if A, B, C, a, §, ¢ denote respectively ‘the angles and
the sides of a spherical triangle, all exprossed in elrenlar
measure, and A, B, C, &, ¥, ¢ thqs@\}if‘ the polar triangle,
we have 2\ N
AN=rx_g B'=rr:-b,' ‘C=m—g¢
@ =mT-A bff}&‘c -“B, d=7-0C,

28. Duality of theorems relating to the spherical triangle.
The preceding resulteds of great importance ; for if any general
theorem he demonistrated with respect to the sides and the
anglos of any § arical triangle it holds of course for the polar
triangle alsdy Thus any such fheorem will remain true when the
angles arerehunged into the supplements of the corresponding sides
and the ;si,az’es inio the supplements of the corresponding angles We
shql]\'s'ﬁs several oxamples of this principle in the next Chapter.

~,“'\29. Any two sides of a spherical triamgle are logether greater
SN than the (hird side.  (Sce the figure of Art. 18.) '

For any two of the three plane angles which form the solid
angle at O are togother greater than the third (Buclid, x1, 20).
Therefore any two of the ares BC, CA, AB, are together greater
than the third, - : :

From this proposition it is obvicus that any side of:a
spherical triangle is greater than the difference of tho other two.

hru
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80. The sum of the three sides of a spherical rinngle is less than
the circumference of o great eircle. (See the figure of Art. 18.)

For the sum of the three plane angles which form the solid
angle at O s less than four right angles (Huclid, X1, 21);

BC CA aB,
heref S S Wl .
therefore, | TR TRT less than 2, O
therefore,  BC 4 CA+ AB is less than 97 x OA ; o\ N

that is, the sum of the arcs is less than the circumfcre\mé’;of a

great cirele, i

A"

31. The propositions contained in the preceding ’;vo Articles
may be extended. Thus, if there be any polygon which has
cach of its angles less than two right an lésbmy one stde 4s less
than the sum of oll the others. This may e proved by repeated
use of Art. 29, Suppose, for example,that the figure has four
eides, and let the angular poinﬁsf:be denoted by A, B, ¢, D.
Then - AB +BC is grditer than AG i
therefore, AB4- BG4+ CD is éﬁr’eater than AC +CD,
and. i fortiori grenter thgAD. '

Again, if there be any polygon which has each of its angias
less than two right\angles, the swm of s sides will be less than
the clroumferench gf o great circle. 'This follows from Buelid,
X1, 21, in thefmwbnner shewn in Art. 30,

32, ffh;{‘}me angles of a spherical triangle are logether greater
tham b Fight angles, and loss tham siz vight angles,
"I‘Iet- A, B, C bo the angles of a spherical triangle ; Iet &, ¥, ¢,
l}b' the sides of the polar triangle. Then by Art. 30,

NN

\ ) @' 40"+ ¢ i3 less than 2,
that is, T—-A+r-B+m—Cis less than 2r;
therefore . A+B+C is greater than .

And since each of the angles A, B, G is less than =, the sum
A4 B+ C ix less than 3m
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33, Identical and symmetrical equality of triangles. If
ABC, A"B"C” be antipodal triangles, the plane of the arc BC is
the same as the plane of the arc B'C”, and similarly for CA,
C"A” and AB, A’B”. Hence the aungles of the one friangle are
respectively equal to those of the other ; and as the distande
between two points is equal to the distance between the
diametrically opposite points, the sides of one trmngls: are
equal to the corresponding sides ot the other. 'lhus the
triangles have all their corresponding elements eq&il

There is however this dilference between thp(ﬁ‘ ‘that if we
go round the two triangles in such & mauner as to tuke
corresponding elements in the same order, ywe shall go round
one triangle in the clockwise, the otherdih the counter-clock-
wise sense. And so if the triangl®{A'B'C" be shifted badily
in the surface of the sphere untxl B” coincides with B, and ¢”
with €, then the remaining veltlces A” and A will not coineide,
but will be on opposito sides of the common arc BC. The
triangles therefore are ot superposable.  If however the
triangle A’B'C", regarded as a material film, were lifted off the
sphere and, as it }’fén}, turned inside out, so that the formerly
econvox side of Hgvsurface would become concave, the altered
triangle conld $hen be exactly superposed on the triangle ABC.

Antlpoda.l ’srungles are accordingly equal to one annther
in aver)\ 1especb and yot not superposable in the ordinary
meafilpg of the torm. Triangles having this sort of equality
afes said to be symmetrically #* equal, as distinguished from

.f'ffrla,nfrles which are superposable and which are said to be
> identically equal, or congruent,

34. The proof, by the method of superposition, of the
equality of plane triangles under certain circumstances, as
used for example in Euclid, 1, 4, 8, and 26, may be applied
equally well to spherical triangles on the same sphere; the

# This term is due to LEGENDRE (Féomdirie, VI, Def. 16.)
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test of equality being that one triangle should be superposable
on the other, or on the antipodal triangle of the other, In
this way may he proved the first throe cases of the following
theorem ;

Two triangles on the same sphere are either congruent or
symanetrically equal, and therefore have all their COHTESpORding A .
elements equal, ) \' \J)

(1) When two sides mnd the included wngle of one ure vesper
drwely equol to two sides and the included angle of the ofhek, ™

(2) When the three sides of ome are respoctively e:g&zﬂf to the
three sides of the other, 8

(3) When two angles and the adjocent side o onE are sespec-
tively equal to fwo angles and the adjacent side diNlie other.

(4) Hlhin the three angles of one are m@}e?;ﬁwly equal fo the
e angles of the other. ) ’

(Case (1) has no analogue in plagies geometry ; it is derived
from Casc (2) by consideration.qfﬁ;hé supplemental triangles.

38, The angles af the base of an isosceles sphevical friangle are
e, &
For if the sides ,\XC} are equal, and if D be the mid point
of BC, the trinngles ADB, ADC have their corresponding sides
oqual cach to waph, and therefore are symmetrically equal.
Hence the an@led B and G are equal.

It aB ‘uqﬁé arc quadrants, the angles at the base are right
:mglesﬁ\s{wirt& 11 and 9.

36 If tuo angles of @ spherical triangle are equal, the opposite
mg’irﬁ s are equad.

N/ Since the primitive triangle has two equal angles, the polar
tiangle has two equal sides; therefore in the polar triangle
the angles opposite the equal sides are equal by Art, 35,
Henee in the primitive triangle the sides opposite the aqual
angles are equal,
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37. If one angle of a spherical friangle is greater tham
ansther, the side apposite the grealer angle is greater o the side
opposite the less angle.

¥y

A ] .

D O

Let ABC be a spherical triangle, and lef<the angle ABC be

greater than the angle BAGC: then the side'AC will be greater

than the side BC. At B make the uﬁ@lé ABD equal to the

ungle BAD; then BD Is equal to QD"(‘}&rt. 21), and BD DG 18

greater than BC (Art. 20); t.hepeforé AD + DC iz greater than
BC; that is, AC is greater tha}ﬁ:BC.

38. If one side of o sjﬂié;}z“ml triengle i greater than ancther,
the angle opposile the greaier side s greater than the angle eppusite
the luss side, &

This followaéoﬁﬁ the preceding Article by means of the
polar triangle,

Or thugp suppose the side AC greater than the side BC, then
the anmlé‘\A'BG will be greater than the angle BAC. For the

anglg ABC cannot be less than the angle BAC by Art. 37, and
t@ﬂhglc ABC cannot be equal to the angle BAC by Art. 36;

,,}}herefm‘e the angle ABC must be greater than the angle BAC.
¢\*  This Chapter might be extended; but it is unnccessary

to do so, because the Trigonometrical formulae of the next

Chapter supply an casy method of investigating the theorems

of Spherical Goometry. Sce, for example, Arts. 67 and 68.
39. Note.--The foundation of the science of Spherical Trigonometey

is attributed to the astronomer HIFPARCHUS {150 =.c.). Fundamental
theorems of the subject arc found in the Sphaerics of MENELATS snd in
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the Almagest of ProrEmy. These were afterwards alaborated hy the
Arals, and in the middle of the fifteenth century by REgioMoxTanus,
for uze in Astronomy,

In modern times the study of Spherical Trigonometry received a
fresh impetus from the writings of Ruvizr, who published several
memoirs on the subject. The first appeared in the Mémoires de
UAcadémie Royale de Berlin in 1753, and was followed some years
later by a series of papers in the dete Petropolifana ; of these the most £
important ave those entitled ** D¢ Mensura Angulorum Sofidorum™ (1778,4 ‘".\
p. 31} and ¢ Frigonometria Sphaerica Universe ex primis princiniia
derivatnn” (1779, p. 78).  LAGRANGE gave an investigation of the formij‘la.e
of the spherical trisngle a fow years luter in the Jowmal de, BFcble
Polytechninque (1799, Calier 8, p. 270), . M'\'\ >

The chief contributors to the sclence of Spherical Begmetry, in
additlon te those already named, are Viwra {1598), Nivier (1614},
S¥ELLIUS (1626), (rmarp (1629), TexeLs {178‘2),'{)‘&1-_‘1\'13313 (1787},
Crasums (1831), Scuwrz (1839), CUDERMANN“({S%), and Borewnnr
{1847, \O

The extension of the standard formulae t4 tFangles whose sides and
angles are not necessarily losa than 180° sy é;gnm-a.ll ¥ ascribed to Migirs
{* Bntwickelungen der Grimdformeln dex Sphivischen Drigonometrie in
gristindiglicher Allgemeinheit,” I"erhﬁ{fi&u-ﬂgen der kin, sich. Gesellachaft
der Wisscuschafien zu Lefpyig, 1960, p. 51). But from a remark of
Gauss’s in § 54 of his Theorind Meotus Corporum Coelestium (1500), it iz
plain that he had thought,“obthis generalisalion, and had worked it
ont, though he did n t{f)’ublish it. Professor CoaTveNeT, in the
preface to his work on jﬁtronomy, points out thab in his own Treatise
on Trigonometry, published in 1850 {a work ot present ont of print and
difficalt to procieglthe standard formulae are proved for the general
triangle ho\ye\\'rm:, Mépirs’s first monoir on the subject appeared in
1846 (ef §802) We shall diseuss the generalisstion of the triangle
.in Chaﬁt%\gnx.

O
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CHAPTER [II C
RELATIONS BETWEEN THE TRIG(JN‘()\TTTRTCAL
FUNCTIONS OF THE SIDES AND TI{B "ANGLES OF

A SPHERICAL TRIANGLE, v

40, Elements of a gpherical tnanglé» A spherical triangle
has six elements, namely the three \des a, b, ¢, and the three
angles A, B, C.  When any thrée «of these are given, the form
and dimensions of the tI‘ld.I]gIQ arc completely determined, as
there exist relations by aweans of which the other three
clements can then be foand. These relations will be cs,tdbh‘shed
in the prosent, chapter. :

They may coni*e\mently be divided into two classes. In
Section L. wﬂk{{e considered those formulae which involve four
eloments ofi\the triangle; in Section II those which involve
five or 3116 Slements.

x'\"'
§

;\n 41, Formulae involving four elements. Thore are four
,\'"\} * cases, according as the elements involved are :

L. Three sides and an angle.

SreTion T,

II. Two sides and the angles opposite to them.
III. Two sides, the included angle, and another angle.
IV. Three angles and a side.



§4%] FORMULAY, OF THE TRIANGLE. 21

Case. I.-—Three sides and an angle.

42, To express the cosing of an angle of o friangle in lerms of
stnes and costnes of the sides,

A O\

Let ABG be a spherical triangle, O £h “centre of the sphere.
Let the tangent at A to the arc AG fneét OC produced at E, and
Jet the tangent at A to the arc AR meet OB produeed at D; join
ED. Thus the angle EAD isf{,”éhé angle A of the spherical tri-
angle, and the angle EOD\”mcasures the side a

From the triangles :AQE and ODE we have

7

DE2XAD? + AE? — ZAD. AE cos A,
;DE«%—- oD%+ OE* - 20D.0OE cosa ;

N\

also the jangles OAD and OAE are right angles, so that
0D?= QA ¥AD? and OE?=OQA?+AE% Hence by subtraction
we have”

83" 0= 20A2 4+ 9AD. AE cos A — 20D. OF €084 ;

Y
P

\/ A OA AE AD
cherefom cos 4= gE- ' oD + BE 0D cos Aj
that is cosa=cosheosctsinbainecos Aj ... e 1)
GOS8 & — 08 b cos ¢
. herefore cos A e hene {2}

TLB, B



22 SPHERICAL TRIGCNOMETRY. (814

43, We have supposed, in the constraction of the preceding Article,
that the sides which contain the angle A are lesg than quudrants, tor
we have assnmed that the tangents at A meet OB and OC respactively
produced.  We must now shew that the formula obtained is true when
these sides are not less than quadrants. This we shall do by special
examination of the cases in which one side or each side is grenter th&x\
a guadrant or equal to a quadrant. \

(1} Suppose only une of the sides which contain the anglafﬁ.tg\. be
grester than a quadrant, for example AB.  Prodnce BA mj”c}\BC to
meeb at B'; and put AB'=¢’, 0B’ =¢". \

+54
&/
o\
)

Then we have from the triax gle AB'C, by what has already heen
proved, '
o8 &= cos b a8 €' + sin b sin ¢ cos B'AC

but a'=7 —a, ¢’=x-p, BAC=s-A; thas

p@@: cos b cos ¢ +sin b &in e cos A,
¢ LNV
{2} Suppose b\&k}thc sides which contain the angle A to be greater
than guadrafits, Produce AB and AC to meet at A'; put AB=r,
AC=v ’bﬁé}l"from the triangle A'BC, as before,

IN €08 @=¢o8 & o8 ¢’ +sin b sin ¢’ cos A’ 3
~&
O
N
Q)
\
|
4

bub b'=7 b, e’'=n—¢, A'=A; thus

cosa=rcosbcosc+ainbeine cos A,
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(3) Suppose that one of the sides which contain the angle A is a

quadrant, for example AB; on AC, produced if necessary, take AD
equal to a quadrant and draw BD. If BD is a quadrant, B is a pole of

(/4

AC (Art. 11); in this case a=3%r 9;3&:}!'(:5# as well a8 c=3r. Thus
the formula to be verified reduces$o’the identity 0=0 If BD is not
& guadrant, the triangle BDC g‘fyés

€03 ¢ =cog CD\c\oe BD +gin CD sin BD cos CDB

snd cosCDB =0, \MCD cog{3mr = b)=sind, cosBD=cond:

thus O cosg=sinfcosA;

and this ia’ \\vﬁg,\t '{she formuola in Art. 42 becomes when e=4m.
(4!\ wppose that hoth the sides which contain the angle A are quad-

rag The formula then becomes cosa=cos A ; and this is cbviously
ﬁ‘ue for A is now the pole of BC, and thus A=a.

4 \' . ' Thug the formula in Arb. 42 is proved to be universally true,

44, The formula in Art. 42 may be applied to express the
cosine of any angle of a triangle in terms of sines and cosines
of the sides ; thus we have the three formulae,
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o8 & = ¢0os b cog ¢ 4 sin & sin ¢ cos A,
cos b=cosccosg+sincsinacos B, ... ... (3
co8 ¢=cosa ¢os b+ sina sin b cos C,

These may be considered as the fundamental equations 0{\
Spherical Trigonometry: we shall deduce various formilde
from them, KoY
S\
45, To eapress the sine of an angle of spiwm’cc;.{j{?&-ngle in
terms of trigonometrical functions of the sides. \ R

We have NG

L &

1,./\

cogA_cosa*cosbcosc_ \
" sindsine i,j\\"

4
= £0S @ — cal¥d koS O\2

therefore  sin?A=1-— (_____: o\ iy

sin fsin ¢
»,':’
_ (1~ cou®B){1 - cos) - (cos @ — cos ) cos ¢)?

L)

o 8in?h sin’e
3

N

A cos’a — cos™ — cosZe + 2 cos ¢ cos b eos ¢
~ 8in?6 sin®e

3

L )
¢ \./

therefore ’\\

in Ass — . (4
® R% #in b sin ¢ )
The yadical on the right-hand side must be taken with the

P%@?e sign, because sind, sing, and sinA are all positive,
g to the restrictions of Arts, 22 and 23.

(V{1 - cos%a ~ c0s? — cose -+ 208 & cos b c08¢)
Sl SRRSO C0sE)

““,'é_..
- \ $) ¥ These formulae were discovered by AveaTeesTis, who made various
3 applications of them. A demonstration of them i

\ 4 5 given by HrLkn
formulae of the spherical

was shewn by Laomraxcs;

{(Mémoires de Berlin, 1753). All the other
triangle may be deduced from them, as
Gauss, also, in an appendiz to BCHUMACHER'S translation of CarNorS

Géomdlrie de Position, derives gll the other formmlae from them {GaUss,
Ges, Werke, vol. 1v, p. 401),
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Cage IT.—Two sides and the angles oppogite to them.

46. From the value of sinA in the preceding Article ik
follows that
sinA sinB sin C
R e AL LIPS (8)

for each of these is equal to the same expression, namely,
{1 — cos?y — cos™ — cos% + 2 cos @ cos b cos c) : {(I\f)
ginesinbsine RY
Thus #he sines of the angles of a spherical triangle arve pmﬁm Honal
fo the sines of the oppesite sides. Wo shall give alL mdbpendent
proof of this proposition in the following Articles )

- &7, The sines of the angles of a spherical trzm‘;le are praporiional
to the sines of the opposite sides.*

Let ABC he a spherical triangle, O the eentle of the sphere.
Take any point P in OA, draw PDx pcrpendlcular to the plane
BOC, and from D draw DE, DR perpendienlar to OB, OC re-
spectively ; join PE, PF, 0D N

\“\ Since PD is perpendicular to the plane BOGC, it makes right
\/ angles with every straight line meeting it in that plane ; hence
PE? = PD? 4 DEZ= PO — OD? + DE? = PQ? - QE¥;

* This fundamental theorem of Spherical Trigonometry is found,
under s rather different form, in the 8rd book of the Sphacrice r~t
MEvELAUS, .
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A
thus PEO isaright angle. Therefore PE = OPsin POE = OPsing;
and PD = PE sin PED = PE sin B = OP sin ¢ sin B.
Similarly, PD = OPsindsin C ; therefore

OPsin¢sin B=0OPsindsinC; O\
InB sink A
h BB _sme o\
therefore ginC sine )

7 '\ »
The figure supposes &, ¢, B, and C each less than a“right
angle; it will be found on examination that thed proof will
hold when the figure iz modificd to meet any £4ée which can
ocenr, If, for ingtance, B alone is greater pllapia right angle,
the point D will fall beyond OB instead, of\between OB and
A / o/ A
OC; then PED will be the supplement Q‘ﬁﬁ, and thus sin PED
is still equal to sin B, O
Cage IIT,—Two sides, the inqua&ed angle, and another angle.
48, To shew thatcota sin b; Cob Asin © + cos b ¢os C.
Wa have €08 @ =05 b ¢0s ¢+ sin b sin ¢ cos A,
CO8 b= 608 @ 08 b+ sin ¢ gin b cos C,
) .
%Nein ¢ =gin ¢ 50 C,
p N\ CSnA
Substitut{a" the values of cos ¢ and sin¢ in the first equation ;
thus K >
() a:&\{éos % €08 & + sin 2 sin b cos Cleos b+ Sin ¢ sin l.)c{;s AsinG ;
/ H1

by'h-ansposition
¢\ cosasin® =sina sinbeos b cos C + sin @ &in b cob A sinG;
~

\ ™ divide by sin ¢ sin 5 s thus
cobasind=cosbcosC+cot ASing, ............. (7)
48. By interchanging the letters five other formulae, like

that in the proceding Article, may be obtained ; the whole
six formulae will be as follows :
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cob @ 5in b= cob A sin C 4 cos b cos G,
¢t b sin @ =cot B sin C + cos g cos C,
cot & sin ¢ = cot B sin A + cos ¢ cos A,

) I SO 8
cot ¢ 5in b=cot C sin A + cos b cos A, ®)
cat ¢ sin ¢ =cot C 3in B+ cos a eos B,
cot ¢ sin c=cot A sin B+ ¢os ¢ cos B. O\

Of the angles and sides entering into suy one of these formulae, 01re\
of the angles is contained by the two sides and may be called the § ;m}vr
angle, and one of the sides lies between the two angles and nmy “be
called the inner side. The formula may thon be stated thus 1\— 7

{cosine of inner side}{cosine of inner angle)
=(zine of inner side){cotangent of other side}
- (sine of inner angle){cotangent of othe\abgle }
Thiz verbal expression of the formula.e* IS ap convenient one te

remember. U
"\

Other formulae nf, Uase L

B0. To express the sine, c0siRy rmd fungent of half en angle of
G friangle as funclions of the \:sade.s.
9 cos@—cosbeos e

£ )
T . ¢ N, L T —
We haveo, by Art. Q" cos A sinbsineg

cosa—cosbeoss  cos(hb—6)—cosa

therefore 1 — 005~A=1 -

sinfegne  snbsine
Ho+b— bt
ther efom\w sm2A sin (@ + smog :iﬁ f(a ) ............. (9)

L&‘t ¥s=a+b+e so that 5 is half the sum of the sides of
ﬂle\trlangle then
B+b-c=25-2=2(s—¢), 8-b+ec=2-20=2(s-0);

. A sin(s—dsin{s—¢)
thus $1n2§ —.Slf‘lbW’ ........ ...............,(]0)

* Sugpested to the reviser by o friend.
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. A gin {s - B) sin (s - ¢) %
and SIHE = J{—-—-Eb Sin C ................ (l I)
cos@—-cosheose cose—coz{hte)
Also, 14cosA=1+ , . = it :
sin b sin ¢ siubsing
therefore
cost® sind{a+b+e)sind (b+e ~a) _sinssin{s- a), t ﬁ)
2 sinfsine sin b sine O N
and cosh_ [lEmssinf—a) b (13)F
2 sinbsine \\
) A AL
From the expressions for sin; and cos FANE deduce
- \Y;

ta,ng \/{Sin' 2= b sin ({-\F)}” ceremerne (14)F

sin s gin (s )
The positive sign must be gl;.z(-in “fo the radicals which oceur
in this Article, because ?‘15. less than a right angle, and
therefore its sine, cosifle;gf;?d tangent are all positive.

N

51. Since sin AE ?sillg cos 2. we obtain
&

\ 3
sin A“s'_in‘b S g S s sin (s - a) sin (s — b} sin (s — ¢)}*...(15)
It W be shewn that the expression for sin A in Art. 45
agraes‘with the present expression, by putting the numerator
mm; expression in factors, as in Plane T'rigonometry, Art. 115.
’&\e shall find it convenient to use a special symbol for the

) “radical in the value of sinA; we shall denote it by =, so that

7w =sinssin (s - a) sin (s — By sin (s — 6}y ooovvrennnnne. (16)
and  4n?=1 - cos® - cos® — cos?c + 2 cos a cos b cos c....(1T)}

*BuLer, 1753,

t These expressions for = are given by EULER (Novi Commentari
Petropolitant, Vol Iv, p. 153).
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The expression here repregented by » ocenrs so frequently in Spherical
Trigonometry that it is convenient #0 have a definile name for if.
Professor NEUBERG of Litge suggests that it be called the norm of the
sides of the triangle, and that the corresponding function of the supple-
ments of the angles, usually represented by N, be called the nerm of
the angles.  Professor von STauptT* calls 2s the sine of the trihedral -
angle sabtended by the triangle at the centre of the gphere, or morg™
bricfly the sine of the trianglet; in like manper 2N is the sine of {?ar?".
polar tricigle. . \

B2, Derivation of formulae by projection. The~~f§>l[8ﬁving
compact method of obtaining the fundamental dqiations of
Spherical Trigonometry is given in Col. ANR. CLARKE'S
Geodusy. 1 Depending, as it does, on the pringiples of geometrical
projection, it holds equally well for adl :}riangles, without
any restriction on the magnitudes of\Hc)sides or angles.

Join O, the centre of the ephere\With the angular points
A, B, € of the spherical triangle :;Te}i‘r Q. R be the projections of
C on QA and OB, P its projectton on the plane AOB, § the
projection of @ on OB. N\

Then OR % 0S + QP cos(c — ),

) i*é?: SQ -- RPcosc,
@Cwsin A= PC=RCsin B,

Here make'.th};' following substitutions :

:‘:\ 'OR =cos ¢, 0OS=cosbeose,

' O RC = sin g, QP =ginbeos A,
\”\’ OG=cos b, RP=stn u cos B,
‘.s'\ QC=sinb, SQ=coslsing

*
e e —

(O * Orelle's Journal, XXIV, 1842, p. 252,

o/

*The area of a plane triangle is equal to half the produet of twe
sides and the sine of the angle betwsen them; and the volume of a
tetrahedron is eqnal to one-sixth of the produet of three contermincus
edges and the sine of the trihedral angle between them, The anslogy
between these two results shews the reason of von STAUDT'S nomen-
clature, )

I Compare Gauss, Theoria Motus, § 5.

™\
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c

and we have immediately , xﬁ:\\"
o8 &= 08 b cos ¢ + giﬁ':}\sin CCOSA, iiirennin (18)
sin @ cos B=cos b sin ¢.—ih b cos ¢ cos A e (19)
sin ¢ sin B=gin sj:gh’."’ ................................. (20)

The first and third pﬂ;‘t:h:ese are standard forms, If we
multiply the second phrotigh by sin A, and then divide its sides
by the correspondirg'sides of the thixd, we obtain the standard

3

formula y \~,
, SAcot B=sinccotb—cosceos A ............ (21)
53, The f{':n'r.fn'l'f;lae {18), (19}, and {20} are analogous to the formulae
SO ! @F =B+ %~ 2becos A, .ouii e (18))
\:\ . acos B=c-beosA, _.......oiiieienn (193
N asinB=bainA, ... . o)

th the plane triangle, as will readily be seen on applying the method of

o~ Chapter xv.  For this reason, and because they naturally present

N\  themselves in the proof by projection, these might well he regarded as

/ the fundamental formulae of the spherical triangle. They are the forms

used by CEAUVENET throughout his work on A stronomy, and are Teadily
adapted to logarithms by putting

cosb=rcosd, sind cos A=+gin 6,

whence follow e08 @ =y cog{c - 6),

sina cos B=rsin (o - ),
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It his, however, always been customary in English treatises on
Spherical Trigonomeiry to place (21} among the standard formulae
instead of (181,

Case IV.—Three angles and a side.
54. To express the cosine of a side of a trigngle in lerms of sines o\
and cosines of the angles. _ A
In the formulae of Art. 42 we may, by Art. 28, change \the
sides into the supplements of the corresponding anglds, and
the angle into the supplement of the corresponding sidé; thus
cos{m — A} =cos(x — B)cos(r — C) + sin(w—B)sin{m20ycos(r—a),
that is, cos A= —cos Beos C+sin BsinC go@a.
Similarly  cos B= — cos C cos A-+sin Csindeos b, r.........(24)¥
and 008 G = ~ ¢o8 A cos B+ 5in A S E cos .

55. The formulae in Art. 49 Wij_lje’f' ¢ourse remsain trize when
the angles and sides are changeds into the supplements of the
corresponding sides and angles respectively ; it will be found,
however, that no new for@ﬂae are thus obtained, but only the
same formulae over, again. This consideration will furnish
some assistance in ﬁsﬁim'ng those formulae aceurately in the
mMoemory.

A</
b6, To expkeds the sinc, cosine, and langent, of half a side of a
triangle apfhnctions of the angles.
Welhave, by Art. 54, cosa=
thérefore

g \

\‘:" l-cosa=1-

cos A+ cosBeosC |
sinBsinC  °

cosA+cosBoosC_ cosA+cos(B+C),
ginBenC sin Bein¢  ’
_coa%(A+B:+0)c?sJ2~(B+C ~A) ereen(25)
sin Bsin C

therefore sinﬁg =

* These formulae were first published by Viara in 1595, in the eighth
bosk of his Pariorum de rebus mathematicis respongorsm.
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Let 26=A+B+C; then B+C - A=2(8 - A), therefore

in2®_ _c0sScos(S - A) (26)
sin’s = G B G e e (26)
O\
. Scos{S - A) :
and ] EEBCSIS AN e
an Sy \/{ sinBsin C ~\( )

00sA+cosBeosC_ cos A+ cos(BEY)

A -1 FeosBeo +0os(BE
lso 1+cosa=1+ 8in Bsin C st B IR

therefore

7

&
sagt? S0 }A-B+ 0o} (A4 B-C) _codf@rB)cos(5-0)
9 sin B sin C T A\'sin Bsin G

.?..
and cosgz \/{COS(S — B)eoslS - C)J e --(29).

sinBsin C

,(28)

a_ B ~._c'c$s'8 cos(8 — A) 30
Henee tamg = \/i {gaé G- Bjoos(s - 0) C)} .......... (30}

")

The positive sign mp:ét‘ be given to the radicals which occur

in this Artiele, be{a:use % is less than a right angle.

/o

¢ \J
The expreSsions of this Article may also be obtained imme-
diately frdmbthose given in Art. 50 by the method of Art. 28.
NS/
5'{:\Itfna.y be remarked that the values of sin }a, cosda, and tan e
arevfes!. For it has been shewn in Art. 92 that 285, the sum of the
les of the triangle, is greator than two right angles and loss than
8tx ; henee § is greater than one right angle and less than Lhree, and
accordingly cos 8 is negative, Again, n the polar triangle, any sideis
less than the sum of the other two, And these sides are tho supplementd
of A, B, C; thus w— A is less than 7—B+m—-C; therefere B+ C-Als

- less than «, and consequently 8- A is less than 4w, Also, us A cannot

exceed v, B+C~ A is algebraically greaster than -, so that S-A I
algebraically greater than —4m. Thus 8- A Yies hetween — tr and i,
and therefore cos(S-A) is positive,  Bimilarly, also, coa{S-B) and
cos{S - C) are positive. Hence the expressions formd above for sin?4f,
¢08*§m, and tan®ka are positive, and have real sguare roots.
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. . 4@ .
B8, Bince sine=2sin> cos =, we obtain
2 2

sing= - 008 8 co5{8 ~ A)cos(S - B)eos(5 - C)}%.(Sl)

2
Sin B sin 61
& e shall use N to denote

{—cos S cos(S - Ajcos(S - Bleos(S — C)}%.* D

Noww

B9, The properties of supplamental triangles were proved geometsm

cally in Art. 27, and by means of these propertics the formulagsn in At

54 were obtained ; but these formulae may be deduced anlytlcs.lly

from those in Arl. 44, and thus the whole subject may<pe made to

depend on the formulae of Art. 44.

For from Art. 44 we obtain cxpressions for coa & ‘MB’ cosC ; and

frown these we find \ &

cosA4cosBeosC .
_{eoz @ — cos b cos c)ain®s + [cos b - cos apccnS‘c) (cos £— (08 ¢ COB b)
sin’e ain & a)n £

n the numerator of this frackion vw.mte 1 - eos?x for sin’a; thos the
numerator will be found to reducedts ™

cosafl —cogla - c{ﬁ“b L cosle+2cosaecoalcose),
and this is equal to cosg {me’siu Csin®a sin b sine {Art. 406);
thercfore cos a + o8 B eoa C=cosasin Bsin C.

Similarly the othef two formulae of the same type may be proved.

Thus the formuku, in Arl. 54 are established ; and therefore, without
assummg the g stence and properties of the Polar Triungle, we deduce
the follo mg,‘theorcm If the sides and angles of @ spherical trinngle be
changed Pespectively tnto the supplements of the corvespanding angles and
e the fundamental Jormadae of Art. 44 hold good, and therefore also
. {1?5 )fé.g'nie‘.s deducible from them,
x>

\ *The various expressions representing the value of N were obtained

by Lexsir ( dcta Petropolitans, 1782, p. 49).
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Secrron 11

Formulae invelving filve or six elements.

60. Napier's analogies.*

We have :%= 2%11 ?: M SUPPOSE §.\iinnenne s (32},
and accordingly M)\

SILA+5in B=m(sin @ + sin b), ...... couh: (38)

Sin A —sin B =s(sin a — sin 4). . R (34

o

S 3 N
Now cos A+ cosBcos C=sin B sin Ceos g — - #8In C sin b cosd

and co08B+cos Acos C=gi

therefore, by addition,

in A sin C cogidre \n sin C stit o cosy

(cos A+ cos B)(1 + cos C)=m@}i’0 sinfa+58);: ...... (35)
therefore by (33) we have \ \
sin A+ sin B sim’z +8ind 140080
08 A+ ¢ cos B sin(e+8)  sinC
X 1 _c0si{a-b) 16y
that is, tan,,(A'-k B) mcot%& crvenernaens{36)
Similarly from {35) and (34) we have
p '\sl.hA_sBB__sma ~#ind 14ecosC
COBAT+c0sB  sin{e+b) sinG
that i tan j(a-g)-SE@-0) .0 37
51 ni(A-g) s i@ 1) eot iC. ..., 37

By\substltutmg i (38) and (37) the elements of the polar

\t(umgle, we obtain furthep

tan Ha 4 5) = Egz ig:_]_ g) tande, ..ooeennnn, (36)
tan §(a - 3) = :ﬁ? ;E:_'_ g; tande. ...l (39

* The formulae known by this

name were discovered by NaPIER, and

published by him in 1614 in his Mirifici Logarithmorum canonis dé-

seriptio,

EJUSQUE HIUR Tn wirigque trigonometria,
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The formulap (36), {37), (28), (39) may be put in the form
of proportions or analogies, and are called from their dis-
coverer NAPILR'S Analugies; the last two may be demonstrated
without recurring to the polar triangle, by starting with the
formulae of Art. 44,

81. In equation (36) of the precedmg Article, cos (e~ Dby '\“'\'

and ot JC are necessarily positive quantities; hence the
equation shews that tan (A +B) and cos }(a+5) are pf Jthe
same sign; thus $(A+ B) and L({a+ &) are either both 1832 than
a right angle or both greater than a right a:ng}e}\This is
oxpressed by saying that §(A+ B) and §{e+b) Ba0f the seme
affection, N

62. Another proof of Napier's ana.lbgl\es. The proof of
Article 60 starts from the ﬁmda{nén’tal fermulae of the
triangle. If use be made of the @Xpressions for the tangents
of the half angles in terms of tfhe sides obtained in Art. 50,
a shorter proof may be glverr

For from these expressions it follows that

) st s —
t&q\{;‘ﬂ( tant B = qmg; 5 F—), .................. (40}

and similarly for t’ﬁe other products of tangents. Hence, on
substlbumnam.the right-hand side of the identity

tan3Btan G+ tan fCtan fA

ifa‘n'\\k(d*c»r B)tan3C= 1-tan}Atan 1B !
weget
N sm(e—a)—l—sm(s—b) cos (e - - ) (41)

N\ tan
) tanz(A+B)tangC= sins~sin{s—¢y  cosy{atoy

and similarly
gind {a—b)

tan$ (A - B)tanlc——-——a-_t_ By e (42)

These correspond to results (36) and (37) above. Results

N

Q)
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(38) and (39) may be obtained by a similar use of the expres-
stons for the tangents of the half sides in terms of the angles.

63, Delambre’s analogies. In the identity

sinf(A+B)=sin$Acos } B+ cos} Asin L B, N\
substitute the expressions obtained in Art. 50 for the, 5i\n,es
and eosines of the half angles. A\

Thus, sin}(A+g)y="Em ) +ein(s—a) foin shinTe—o)
sl ¢ N Sudsing
sin{s—B)4sin{s-a) L &
- { }‘+ { E.)'“(‘.})S 1c,
8N ¢ v’

in B s la- )

andso FNEALE) eosilach) adt (49
cos 3 C cosfe T

In' a precisely similar manner .it‘iimy be shewn that
sin} (A= B} _sin} (a8

= AT o

cos:C P {44}

cos§(A+B) _c8Y (u+0) )
SinéC B _t"_'GOS 'é_C g seeas b derr e e .

cos} (A=B)_sinf(a+h) )
sindhC T~ gin fg e

These forrquﬁe are sometimes, but improperly, called Gavss’s
Fheovems ; they weve first discovered by DwkLamBre, They wers
publishéd \gliost simultaneonsty by Gauss (Theorin molus corporum
coe!es:f-'- bite 3 0d), DELAMEBRE {Connaissemee des Teme, 1809, p. 443), and
l\iqu\iwmnm (Zaew's Monatliche Clorrespondenz, 1808, p, 304), Sce the
'R{@’mopkwaﬂ Mugazine for February, 1873,

2 8 .
oy 64, Narter's analogies may be derived from those of 1JELAMERE
o\ simply by division. Thus i the sides of cquation (46) be divided by
"N\ the vorresponding sides of equation (43}, NaFIer’s third analogy i8
\ 4 obtained,
Derameri’s analogies may be devived from those of Narium as
follows. Bquaring Narrer’s first analogy, (36), and adding unity to

each side of the resnlting equation, we get

secth (A B)zcﬂazﬁ- {2~ 5)cos’iC + cos?l(a +b)sin2§(}' e (4)

vos?hie + b) sin g
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The numerator of the right band side is the same as
{1 +cos{a - b}t eos?§C + 4 {1 +coa {z + )} sin?C,
or H1+cosacos b+sinasinbdcos C};

and this of course equals §{I+cosc).

costy{em+ ) sin2 Gt
Extracting the square roots, and determining the sign by the considera- A+
tion that §(A+B) and 4{a+b) are of the same affection (Art. 61}, v\e\' \J)
ohtain 3

Accordingly sec’t{A+B)=

cosy(A+ B)cosje=cosd(a+b)siniC. ............ .‘.\..(49)
Stmilarly from Nar1ERS second analogy, (37), ~
cosd{A - Blsindc=sind (o + b} sindC. . \ {.JD)

These are the third and fourth of DELAMEBRK'S a.nalogles, the other
two are got by multiplying them respectively by, the first two of
Narmew's. 9\

65, Geometrical proof of Delambre’s and Napier's analogies. *
Bisect the side C at right angles by the'are MV, which meets
the exterior bisector of the vertlca.L angle Cin V.

~ Draw the ares VP, v@ perpendicular to the sides , & of the
\, triangle. Since VP =VQ, and VA=VB, and the angles at P and

* Crorrod, Proc. London Mathematical Society, ITI. Demonstrations
not suhstantislly different from this will be found in GUnERMANN'H
Lehrbuch der niedeven Sphirik, § 144, and in a paper by Essex in
GRUKERT'S Arehiv der Mathematik, XXVII, 1856.
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Q ars right angles, the triangles AVP, BVQ are equal in all
respects.

Hence it will be seen that

A A
VAP = VBQ = } (A — B),}
A A
VAM =VBM = [ (A+8);
also, since CP=CRQ, N\ -
BQ=AP=}(a+85), CQ=CP= i(n _gy;;{ ...... (53
A A . A ~ i

Now AVP=8vQ ; adding AVQ to botl, QVRSBVA, these two
angles being bisccted hy VG and vm. Hence, applying the
formula of Art. 54 to the right—angled t@ngles VMA, VPG,

LA A A\ LA
cos AM s1n VAM = cos MVA = eos &p =¢0s CP sin VCP,

that is, cos hosing (A + B) % aBS4C cosk(a—b), ......... (53,
the first of DELAMERR'S fopniiil;n.e.

Again, applying the formulae of Art. 49 to the right-angled
triangles AVP, CVP, we get

=;1rr§(~a +8) cot VP=cotJ(A—B), ....oeoennenn. (54)
\ \?‘n%(a—b)cotVP:cot%—(:r—0}; ............. (55)

e o @) sind(a—b)
le]dlfg,:? / Elié—ga,ﬂ—) =taniCtan (A~ B), ......ecc.oine (66)

d(thts is the second of Napiz's analogics.

\\ The remaining formulae can be derived from the same con-

N

.“\'T. struction, or an analogous one in which the angle © is biscetod
\\ ' tnternally.

In connection with Drvamprz’s analogies, (48)-(46), it is worthy of
remark that the first and fourth are derivable from cne another by the
method of Art, 2. The second and third are unaltered by substitation
of the elements of the polar trisngle; they are, however, derivable
from oue another by substitution of the elements of a colunsr triangle.
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66. The formulae in the present chapter may be applied to
establish analytically various propositions respecting spherical
triangles which either have been proved geometrically in the
preceding chapter, or may be so proved. Thus, for example,
the second of NAPIER'S analogies is
sin (e - 8)
sin 1{a + ) PR
this shews that £(A - B) is positive, negative, or zero, according
as }{sz — &) is positive, negative, or zero ; thus we obtaurall‘the
results ineluded in Arts. 35...38. RS

tan2(A~B) =

87. If two spherical trinngles have two sides of Wb ome equal fo
two sides of the other, each io each, but the fmgilg@ﬁch is contained
by the two sides of the one greater than the gng(e‘ which is contained
by the bwo sides of the other which are equatlde them, the base of that
which hus the greater engle will be gffeate? than the base of the other ;
and conversely. ,'.'

Let & and ¢ denote the 81(193 which are equal in the two
triangles; let ¢ be the base and A the opposite angle of one
triangle, and &’ and A’ snmlar quantities for the other. Then

:Qosbcosc+smbsmccos&
costs =cosbcose+sinbsinceos A’
thevefore 003G/~ cos 4’ =sin bsin ¢ (cos A - c0s AY;
that is, .j\“

sm%(\a«-ku)smf(a a)=sinbsincsin J{A+A")sin L (A~ A);

thm'ghews that 1(z —a’)and L(A— A"y are of the same sign,

y \ J 68, If any point, other than the pole, be taken within a civcle on
Ntk sphere, of all the ares which can be drawn from that point lo the
civewmference the grealest is that which passes through the pole, and

the least that whose production passes through the pole ; and of any
others, that whick is neaver o the greafest is always greater than one
more vemole ; and from the same point fo the circumference there

cot 4 C 2\
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can be drawn only twe arcs which are equal o each other, and these
make equal angles with the shortest arc, on opposile sides of i,
This follows readily from the preceding Article,

69, Reidt’s analogies, N
From DELAMBRE’S analogies we can deduce four obhers
which may be used in the solution of triangles ; thiey are
given by Dr. FrRi&DRICH REIDT in his Siemnlung a'qn-'\f?usgabm

aus der Drigonometric und Stereametrie, 1872.# N
In demonstrating them it is convenient o mipke use of the
following abbreviated notation : \
' Ata=4s, B+b=4s, Opo=4s
. o\J . [ {67)
A-a=4d, B-b=dd, Ovc=4d" |

From DELsMERE'S second analog‘ﬁArt, 63, {44), wo obtain
€08 1€ —sindc _sin (&= B) ~sin 4 (u—8)
€os 3C+sinde sifd{A— B +sini(a—b)
and, when in this we sub§fitute sin (90° — IC) for cosic, if
readily reduees to N\
tan{45” ~ g0t (45° — "y = cot (s - §itan{d —d’). ...{59)
In like mannef DELAMBRE'S third analogy is equivalent to
tan (-{5\§s") tan (45" — ") = tan (s 4 §) tan (d + d"), ...(60)
while similac’treatment reduces the first and fourth to
QU tan o = tan(45° — 5 — @) tan (45° _d_ &), ... (61)
angl\’;,\“ tan 4" cot, § =tan{45° —s 1 d'yeot(45° —d + s ... (62)
\Prom these we obtain other formulas by multiplication and
" ‘ division. Thus multiplication of the corresponding sides of
(5™ (59) and (60) gives
NS Bl -8 = eot(s - )tan (s + ) tan (@ ~ d')tan (d +47), (63)
and division gives _
tan®{43° — d") = tan (s — $)tan(s +5')cot(d ~ d'ytan(d + d). (64)

.. (58)

¥ Fourth Edition, Vol. I, § 87, p. 232. Cf. SErReT, Traié de
) T'rigonmnéh‘ie,_ § 123, o ’
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Similarly from (61) and (62)
tan®d"=tan{45" - s - d’)tan (45" - s+ & tan (45" - d - 5

tan{d5" +d -5, o (65)
tan%" = tan{156° - s - d')tan(45° + s — d'jtan {45 — d - &)
Ban{d5° —d+ &) o, (66) . \
These last four relations are REIDT’S analogies. O

In connection with the ambiguous case in the solutlon pf
spherical triangles (see Art. 109) jt is important to noticc tHe
resalt of applying the formulae just obtained to~ @\semnd
triangle whose eloments a, 4, and A are the gathé”as those
of the original triangle, but whose angle opposibeto the side b
is 180°-8. If ¢ and ¢ be the third an&]e and the third
side, formulae {65) and {66} give: \

tan®] (C' - ¢y =tan(s" - s)cot (s’ +3) tan (d’ dytan{d' +d), {67)

tan’{C' +e)=tan(¢ -5 )tan{s * 5)ttm(d’ dycot(d’ + d). (68)

When g, 4 and B are given, :an;d A has heen found, formulae
{65} and (66) may be nsed to.determine C and ¢, formulas (67)
and {G8) to determine C aind ¢,

70. We shall giwe h}obher proof of the fundamental formulae
of Art. 44, whichis’very simple, requiring only a knowledge
of the element®of Coordinate Geometry,

Suppose ABC any spherical triangle, O the centre of the
sphere, %o O as the origin of coordinates, and let the axis of
2 paiss"?ﬁmugh C. Let zy, . # be the coordinates of A and
Tyt 2 those of B; let 7 be the radius of the sphere. Then

““the’square on the straight line AB is equal to

\ 3

(2, — 22+ (= )2 (2 - 208 {60
M
and also to 2442 2r3e0s ADB S covee e {70
and ity lty’=1% syl at=rh

thus _ Tyt + Yy + 827 = T2 COS Aa B.ovoirirrann. 7 1__)
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Now make the usual substitutions in passing from rect-
angular to polar co-ordinates, namely,

#=reos 8, z=rsinf cosd, ¥ =rsind sin :,bl,} )
Zy=r0080, xy=rsinb,cosdy, y,=rsinb,sind,; A

thus we obtain .
cos 6, cos ) + sin 8, 8in 8, cos(h, — ) = cos ABB; \\(75)

that is, in the ordinary notation of Spherical Trigonontetry,
cosgeosh +sinasindcosC=cose. ‘ » (7T4)
This method, like that of Art. 52, has,ghe sdvantage of
giving a perfectly general proof, as all th@\dUations nsed are

universally true, N

EXAMPLEST

1. If A=g, chew that B and 3 a}'e:: «equal or supplemental, as also

" Coand e n

2. If one angle of a tria.ng{t;ﬁg equal to the sum of the other two,
the greatest side is double.of the distance of jts middle point from the
opposite angle. 2

o

3. When does the, pf%ku' triangle coincide with the primitive triangle?

. Liléd-,. It D be tha‘s(id&[le point of AB, shew that

A, ce3AC +cos BC=2 cos 4 AB cos GD.

5. It t\fu\“mfgles of a spherical triangle be respectively equal to the
sides opg‘éfte to them, shew that the remaining side is the supplement
of t.h“'{lig ining angle ; or else that the trian gle has two quadrants and
E“\Slﬁght angles, and then the remaining side is equal to the remaining
angle.

4.6, Inan equilateral triengle, shew that 2 cos dasinfA=1.

J. In st equilateral triangle, shew that tanMa=1-2cozA; hcnc:e
deduce the limits between which the sides and the angles of an equl-
lateral triangle are restricted.

8._In an equilatera] triangle, shew that sec A= 1 +sec .

v, I the three sides of a spherical triangle be halved and a new
triangle formed, the angle § between the new sides 45 and }c is given
by cos 8= cos A + § tan 3b tan ke sin%,




FORMULAE OF THE TRIANGLE. 43
10. AB, CD are quadrants on the surface of a sphere inlersecting at
E, the extremities being joined by great circles: shew that
cos AEC:GOS AC cos BD - cos BG eos AD.
) 11, Ii b +¢=or, shew that sin 2B + 5in 2C =0,
12, I DE be an are of a great cirele bisecting the sides AR, AC of a

spherical trisngle at D and E, P a pole of DE, and PB, PD, PE, PC he, S
joined by arcs of great circles, shew that the angle BPC=twice the.

angte DPE. : N
13. In a spherical triangle shew that s {’ )
sind sinc+cosbeosceos A=sin BeinC - cos B ens O @fié.}.
{Caaxoril.

14, Ii D be any point in the side BC of a trianglg,:s«hx(v that
co8 AD sin BC = cos AB sin DC + cos ACgin\.Bti. {Cf. Art. 143.)
15, In a spherical triangle shew that if H,Ié; ¥ be the ares of great
circles drawn from A, B, G perpendicular to\the opposite sides,
sine sin #=sgin bsin q}: #in ¢ sin
=aft1 — cos?e — cos®h — c0§9§~i—2 coB ¢ ¢o8 b cos ¢).
: 16, In a spherical triangle, if7#, &, ¥ be the arcs bisecting the angles
A, B, C respeetively and terminated by the opposite sides, shew that
eot & cog A + cot &p’{ég +cot yeos O =cotateot b +cote.
~17. Two ports arofin the same parallel of latitude, their common
latitude heing £ afd their difference of longitude 2\: shew tLat the
saving of distan\in sailing from one to the other on the great civcle,
instead of sa.ilii% due East or West, is
{ “\ ’ Zr {Aeosl —sin- {sin X cos Ij},
A being*:a}pressed in circular measure, and r being the radius of the
Eartos
'\ .
738! If a ship be procceding uniformly along a great circle and the
obzerved latitudes be L, Iy, &y at equal intervals of fime, in each of
which the distunce traversed is s, shew that

— ooa-190 R0 )0 3t 1)
- sind, ?

8

¥ dencting the Earth’s radius: and shew that the change of longitude
may also be found in terms of the three latitndes,

N

# A
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EXAMPLES II,
1. In any spherical trinngle shew that
- Zeosd{a+bicost{e ~b)tan je=sinbcos A +sinacosB;
and that
tan (A - a}tun$(B +b) = tan (B - ) tan LA +a) £\
2. Prave that

- S
25 N
" cesatanB cosbtan A+tan C=cosn cos b ban A tan B tEPEO:"

3, Given two meridians of a sphere, through a given peint on &
meridian bisecting the angle between them is drawnd Veriable great
cirele cutting them in the points P and @ ; prove, tlifs the sun of the
tangents of the latitudes of P and @ is constantags\\ (1. U. L., 1898)

w4 In a spherical triangle whose sides areseadh less than 907, prove
that an extecior angle is grester than eithqr\éf.ot.he interior and oppoesite
angles, '\ & {R. U. L, 1593}

v 5. If P is taken in AB, s side gP\any trinngle ABC, such that AP
equals AC, shew that A v

L sin ¢ cos CF’:eos’ésinb-r—cosbsin(c-—b).
-2 {8l and Art, 1896.)
6. Shew that N\ \
- sings [T coszeoshooss

s?n\ U ¥1+cosAcos BensC (Sei and Art, 1897)
7. The aide &B,}BG of a spherical quadrilateral ABCD are denoted |
.. by a, b respectively, and the angle ABD by #; shew that
ﬁan]?: _cosasinb—sinafcos ® cos B+eotC s__ip__B)_.
A —¢cobAsin b +sina(cos bein B - cot C cos B)
I’ {Sci, and Art, 1598]
& ‘
. X8/ corresponding angles of a triangle ABC and its polar trisngle
& e equal, shew that
N sac?A + vec®B 4 sec?C + 2sec Anec Bsec G=1]. :
w\: ' (Sci. and Art, 1898}
\ } " 8, If A=a, shew that
' _tanid-tanie
tan o= IT-tanZbianic  (Sci, and Art, 1809
10, If the sum of two angles of a splierical trisngle is less than

shew that the sum of the opposite sides is less.than the semi-circumfer
ence of a great circle, .

%

M
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11 Prove that in any triangle

sin(A+B) cosa+cosh
G T I1+cosec

[Moraaw JeNRINg {Messenger of Mathematics, XVII, p. 30) regards
this as a fundamental formauls of the triangle, and deduces from it the
analogics of Narrur and DELAMERE. ]

12, L, LY, L, L™ are four points on a sphere, and A is the a,ngle
between tlie ares LL and 17", Shew that

cos L cos LU — eos LL™ vos 'L =sin LL/ sin L”L’” cns A. o\s{

.\V
N
D

N
. \
Q

)
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CHAPTER 1Iv. e X\

SOLUTION OF RIGHT-ANGLED TRIANGLES,
s

71, In every spherical triangle there i% six  elements,
namely the three sides and tie thr‘ec‘a.riglcs, besides the
radius of the sphere, which ig supposed’ 30"bo 2 known constant.
The solution of spherical triznglesiis “the process by whieh,
when the values of a sufficient niwiber of the six elements are
given, we caloulate the values\of the remaining elements. It
will appear, as we procced;i’tha,t- when the valnes of three of
the elements are giveny those of the remaining three can
generally be found. , We begin with the right-angled triangle:

here two eIcménjga: in addition to the right angle, will be
supposed known\.&?

72. The fHrmulao toquisite for the solntion of right-angled

triangles @ay be obtained as particular cases of the formulae

of tige\:pfeceding chapter, by supposing one of the angles s

right ngle, as C for example, They may also be obtained

Jery easily in an independent manner, as we shall now shew.

S8 78, Formmlas of the right-angled triangle. T.ct ABC be a -

"\ spherical triangle having a right angle at C; let O be the
\ centre of the sphere.

Drazy the tangent at B to the great circle BC; this tangent

lies in the Plane BOGC of the great circle, and will therefore

meet OC produced ; leot the point of intersection be denoted
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by ¢, Also draw the tangent at B to the great circle BA;
thiz will, for the same reason, intersect OA produced, and the
point of intersection may be called A, Join A'C',

A'
¢\
A e
[Ad ! v
[ £
[ \
\

B

Since the radius OB is perpendictlar to both the tangents
BC' and BA), it follows that the\pline ABC’ is perpendicnlar to
every plane through OBuand therefore to the plane BOC.
And, by hypothesis, thg, plane AQC is perpendicular to the
plane BOC, ITem éhne AC', being the intersection of the
planes ACC and YA'BE, is perpend.mula.r to the plane BOC,
Therofore the a,nﬂes 0C'A and 8C'A are right. Thus the
diagram onthifis four right-angled triangles A'RC,, A'OC)
C'0B, and f A'DB, having the angles ABC/, AOC), C'OB, and AOB
equal I‘e&pecmvely to the elements B, b, a, and ¢ of the spherical
tr}a.ltgle

O oB_oB 00"
\ 3 QA" OC OA
and thevefore CORE=COSECOBH. veuvivirinniarrrianenas (1) -

CA CA OA gind

BA’ OA" BA sind

that is, sinb=sin Bsine ,-} @
Sitnﬂar]y sing=sin Asine JoTT .

Again, §in B =
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BC' BC" OB tanwa

CosB= g0 =58 BN ~1an s
that is, tan o = cos B tare;) ¥
similarly tanb=cosAtane | '
C'a CA oC tanlk Q
TanB= 2 =""" . "~ - "2 .
BC OC° BC ame SO\
that is, tan { = tan Bsine:;) NS
o . ....,.,.H...‘.v:.....-\r’(‘t)
similarly tan ¢ =tan A sind. | P
Multiply together the two formulae (4) ; e,
~\ -
ts Y !
tan A tan B = -ir-l-”’ ta_n_b = —-I—*H = by (1};
gingsind cosa CoS f coze
therefore €08 ¢ = 6ot A cot'.B\.'f ....................... (3}

Multiply erosswise the second ’f}rmula in {2) and the firs
in {3); thus, sin @ cos B tan c.;::tdn asinAsine;

sin A'eos ¢
.

therefore C08Bw=—=o =ginAcosd, by (1).

L6 O
Thus o B=sir1Acosb;} ..\.,{6)
similarly & cosA—sinBoosa, 47

These sig fornmulae comprise ten equations ; and thus we can
solve every tase of right-angled triangles. For every one o
these !:sri..équations 1s a distinet combination involving thres
out phfle five quantities a, b, ¢, A, B; and out of five quantities
onlyrten combinations of threo ean be formed, Thus any 670

\ ‘the five quantities being given and a third required, some

oue of the preceding ten equations will serve to determiné
that third quantity.

A three-dimensional model % of the diagram of this Article may te
made simply as follows. On s piece of atiff puper deseribe a circle with
centre O and radins equal to that of the sphere. Mark on the cirewild

ference points B, C, A, By, such shat 860, CaA, and Aé)B1 are equalt‘:
the elements a, b, ¢ of the spherical triangle. Draw tangents BC', B

* Buggested by Prof. G, H. Bryar.
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meeting OC, OA in ¢, A’ respeclively. Now cut the paper along the
lines OB, BO, C'A', A’B), B,0O, make creases along OC’ and CA’, and
bend up till OB and OB, coincide.

T4, As we have stated, the above six formulse may be
obtained from those given in the preceding chapter by sup-
posing € a right angle. Thus, (1) follows from Art. 44,

O\

{2} from Arb. 46, (3) from the fourth and fifth equations of \

Art. 49, (1) from the first and second equations of Art. 49,.
(5} from the third equation of Art. 54, (6) from the firss, an&
seeond cquations of Art. 54, RS

Since the six formulae may be obtained from\those given
in the preceding chapter which have heen voved to be
universally true, we do not stop to shew that' fhe demonstra-
tion of Art. 73 may be applied to every ogdse Wwhich can oceur ;
the student may for exercise investigate® the modifications
which will b neeessary when we auppé»se one or more of the
quantities , b, ¢, A, B equal to @ rlght angle or greater than
a right angle. Ny

78, Certain properties phxight-angled triangles are deducible
from the formulae of &9 73,

From (1) it follows that cos¢ has the same sign as the pro-
duet cos & cos by Hietice either all the cosines are positive, or
else only one i$ positivc Therefore in o rightangled frigngle
either all r}w@a ee sides are less than quadrents, or else one side is
less ﬁim’f»x “fuadrant and the other two sides ave grealer tham
ﬁmudmn}s

me (4} it follows that tanc has the same sign as tan A,
Th,ez ofore A and o are either both greater than 4=, or both less
han 4 ; this is expressed by saying that A and a are of the
same affection, Similarly B and & are of the same affection.

76. Napier’s Rules, The formulae of Art. 73 are comprised
In two rules, which are called, from their inventor, NAPIER'S
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Bules of Ciroular Parts, NAPIFR was also the inventor of
Logarithms, and the Rules of Circular Parts were first
published hy bim in a work entitled Mirifici Logarithmorum
Canonis Desoriptio..... Edinburgh, 1614. These rules we shall\
now explain. \

The right angle is left out of consideration ; the two sides
which include the right angle, the complement of #hd hypo-
ténuge, and the complements of the other angles are dtlled the
circular parts of the triangle. Thus there arg‘ Jibe cireular
parts, namely, a, b Ir—A lr-g im — B4 Wnd these are
supposed to be ranged round a circle ig the order in which
they natueally oceur with respect to t}{e\"’srianglc.

7

:’\'“: .
40y one of the five parts may be selected and ecalled the

iequdle part, then the two parts noxt to i are called adjacent

parts, and the remaining two parts are called opposile parls.
Fo_r example, if 1 — B is selected as the middle part, then the
adjacent parts are g ang 3m—¢, and the opposite parts are
b and Lr - A

Then NaPIER'S Rulos are the follawing

- sine of the middle Part = product of tangentg of adjacent parts;
. 8ine of the middle Part=product of cosines of opposite parts.
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77, Narrer’s Bules may be demonstrated by shewing that they agroe
with the reenlis alrcady cstablished. The following table shews the
required agreement : in the first column are given the middle parts, in
the second column the resulls of Narter's Rules, and in the ¢hird
column the same results expressed as in Art, 78, with the number for
reference nsed in that Article.

A=
I sinflr— A=

osacos(érﬂa)" cos A=cosasinB.,, (6)

The last four cases need notMave been given, since it is chvious that
they are only repetitions gf\what had previously heen given; the
sevetth and eighth are _‘ titions of the fifth and sixth, and the ninth
snd tenth aro repetitibyg of the third and fourth.

78. Tt has some[;i:é{es“ been stated that the method of the preceding
Article 15 the OJ\IK. ¢tre by which Nartor's Rules can be demoistrated ;
this statemex{frh however, is inaceurate, since hesides this method
Narren Tiziugelf indicated another methed of proof in his Mirifici
Loyaritinseum Canouis Deseriptio, pp. 32, 35, This we shail now
brieﬂy explain, :

o Lo ABC be a spherical triangle right-angled at C; with B as pole
\Jgsé‘ribe @ great circle DEFG, and with A as pole describe a great
frele HFKL, and produce the sides of the original triangle ABC to
et thess great circles. Then since B is & pole of DEFG the angles
a6 D and G are right angles, and since A iz a pole of HFKL the anples

8 H and L gpe right angles. Hence the five triangles BAC, AED,

BFH, F KG, KBL are all right-angled ; and moreover it will be found

9% &Xamination that, slthough the elements of these triangles are

dm-e ] sin{yr —¢) =tan(ir — A)tan{ir - B) -l cos ¢ —ootAeotB, ., {5) J
sinfdmr e} =cozacosh COSEC = COSMEOS T .., (N
dr—B | sin{lr - By =tan o tan (Lr - ¢} cos B =tan a coty c.:.,(3}
sinfgr - B)=cos boos{in - A) cosB=cogd SJhJ-“ .. (6}
@ sin a=tan b tan{ir — B} sin ¢ = taldotB. ... (4)
sin @=cos(dr - Acos(ir - ¢) sin g jﬁéifn Asine. ...(2)
_— . L
b sin b =tan{}r - Altana \Sinb =cot Atan a.... (4}
sinb=cos{§r - Bleoa(§w — ) \ainb —sin Bsin ¢ .2}
— o
Yr-A| sin(br - tanbtan{ir~c)o\" |cosA=tanbeote. ...(3)
¢

¢\
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different, yet their circular parts are the same. We will ecmsldeé;qfco::
example, the friangle AED ; the angle EAD is equal to the angle H
the side AD is the complement of AB ; as the a,nglats at C and G are
right angles E is a pole of GO {Art. 13}, therefore E.A ia the complen}ent
of AC; us B is & pole of DE the angle BED is a right mlg?e, there Q;{
the angle AED is the complement of the angle BEC, that Is, "the anghe
AED is the complement of the side BC (Art. 12); and snml{mlg £ :
side DE is equal to the angle DBE, and is therefore the Fgmp Ehen
of the angle ABQ,  Hence, if we denote the clements of t}k trlang]‘:e
ABC as nsual by «, b, A, B, we have in the bt-iuug}e AED the
hypotennse equal to i7w - b, the angles equal to A ':-mﬂ? i e, a.n(lrli‘:he
sides respectively opposite these angles equal to ir & Band 4r —c, 5 e
tircular ports of AED are therefore the samea¥those of ABC, Slnll;
larly the remaining three of the fve rightsahgled trianglos may
shewn to have the same circular parts as txhe:ﬂia.nglc ABC has.

N

A/

Now take turo of the theorems in Art, 73, for exampla (1) and (3}

\:f}}eh' the truth of the gen ¢ases comprised in Naricr’s Rules will be
A

2 &

ouud to follow from applying the two theorems in suceession Lo the

five triangles formed in the preceding figire. Thns this method of

regards esch Rule, not as the statement of

dissimilar broperties of ong triangle, but as the statement of similat
Properties of five allied triangles,

79. In Narter’s work
Article is COpY,
intimates that th,
this figure, 83 we

a figure is given of which thas in the preceding
@xcept that different, letters are ased ; Naprrg brielly
o tnth of the Rules can easily be geen

by means of
11 as by the method of induction from

consideration
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of all the cases which can ocear. The late T, 8, Davies, in his edition
of Dr. Hurron's Course of Mathematics, drew attention to NAPIER'S
own views and expanded the demonstration by a systematic examina-
tion of Lle figure of the preceding Arvticle.

It is however easy to evade the mecessity of examining the whole
figure; all that iz wanboed is to cbserve the conmexion bebween the
triangle AED and the triangle BAC. For let @, o, a;, a,, @; represent
the elements of the triangle BAC taken in order, beginning with the g
hypotennse and omitting the right angle; then the clements of th.
triangle AED taken in order, beginning with the hypotenuse ahd
omithing the right angle, are dm—my, dr—ay, dr—oy, dr-a and Ay
If, therefore, to charucterise the former we introduce a new sei ef quin-
tities py, 2y, Pur Par Py such that o +p =g+ m=ay+py= J‘w\&nd that
#y=a; ard py=a, then the original triangle being chaPacterised by
P Pas Jtas Bay Py, the second triangle will be aimilarl{icharacteliaed by
Py Par Py P Poo As ihe second friangle con gwe\p ge to a third in
like manner, and so on, we see that every righss mg}ed triangle is one
of & system of five such triangles which arsall’ charaeterised by the
quantilies py, pg, 1y, Py, s, always taken i m o.rﬂer, esch quantity in its
turn standing first. A\

The late R. L. Eriig pointed nut'thls connexion hetwecn tho five
triangles, and thus gave the true s;gmﬁca,nce of Narrer's Rules. The
memeir containing Mr. Erris’y mvcstlgatwns which was unpublished
when the first edition of thg‘present work sppeared, will be found in
Pages 328-335 of The Matematical and other writings of Robert Leslie
Eilis .. Cambridge, 1868\,

Narrew's own mobhod of considering his Rules was neglected by
writers on the subjebt' until the late T. 8. Davins drew attention to it,
Hence, ag we ba\\: already remarked in Art. 78, an erronecus state-
ment woa ma@kf‘eapecting the Rules. For instance, WoODHOUSE says,
in his o3 égb\wme.ﬁry;  There is no separate and independent proof of
these rn\h< ¥ AIRY says, in the trestise on Trigonomefry in the
E“"nyOpa,dm Metropolitanm i ** These rules are proved to he trus
only bj’ showing that they comprehend ull the equations which we

#iawe just found,” *
*—-—-—__

* A dizcussion of NAPIFB’S Rules of Circular Parts by Prof. E. O.
Loverr will be found in the Bulletin of the American Mathematicol
Soeiety, Second Series, TV, 1898, p. 252. 8ee also O. T'wnn, Ucher
Subsiitutions: rUppen in d,er sphirischen Trigonometrie, Mittetlungen der
W[?f sG’e.s'dE in Hamburg, 111, 1897-8, p. 200,

N4 [+
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80. Opinions have differed with respect to the widlity of Narier's
Rules in practice. Thus WooDHOUSE says, © In the whole compass of
mathematical science there eannct be found, perhaps, rules which more
completely atbein that which is the proper object of rules, namely,
facility and brevity of computation® {Trigonemetry, Chap. x.). On
the other hand may be set the following sentence from Air¥'s Trigot
nometry (Eneyclopedin Metropolifona): “In the opinion of DLJ,A\ﬂmE
fund no one was better qualificd by experience to give an opinion) Hese)
thearems are best recollscted by the practieal calenlator i %hur
ungonnected form.” Sec DELAMBRE's Astronomie, Vol I, p., 200 Pro-
fessor D Morean strongly objects to NATIER'S Rules, ad says
{Spherical Trigonometry, Art. 17): “There are cert {mmemonical
formulae called Naever's Rules of Cirenlar Poris, Wik are generslly
explained. We do not give them, becanse we aresonvineed that they
only create confusion instead of assisting the 1[13%}0}‘}7.”

81, SBolution of right-angled tnan\gfes. We shall now
proceed to apply the formula,c of ATt 73 to the solution of
right-angled triangles. We shally assume that the given quan-
bmes are subject to the ]lmlt.d:tl()l’ls which are stated in Arts

2 and 23, that is, a given) glde must be less than the semi-
circumferenee of a great Gircle, and & given angle less than
two right angles.

In making numeérical caleulations from the formulae, use is
mado of logaritﬁn The student who hag had practice in the
solution ofyplane triangles will be familiar with the use of
logarithiti¢*and trigonometrical tables; others are reforred to
the auﬁxors hook on Plane T mgmmmetry, where a chapter i3
dé(ntéd to the subject. There is just one eaution which it

\3eems desirable to repeat hicre ; namely that tho cslenlation of
o3 very small angles by their cosines, or of angles. near 90° by

their sines, is to be aveided, as the correspending tabular

logarithms vary very slowly. Tt is preferable to caleulate sueh
angles by their tangente,

There are six casos to be considered.

82. Case L—Having given the hypotenuse ¢ and an angle A
Here we have from (3), {5), and (2) of Axt, 73,
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tan b =tanccos A,l
cot B = cos c tan A, }
sin @ =sin ¢ &n A,

Thus & and B are determined immediately without ambiguity ;
and as @ must be of the same affection as A (Art. 75), ¢ also is '\
determined without ambignity.

It is ohvious, from the formulae of solution, that in this ca.se,\ \

the triangle is always possible. O
If cand A ure both right angles, ¢ is a right angle, and fJ(and
B are indeterminate. ¢

K&

If @ prove to he very near to 50°, which is the cose when A and ¢ are
both very near to 90°, one must commeuce by calenliting the values of
hand B. Then e may be determined by either of e’ Tormulae

tana=gin®tan A, tanu=tan c}wﬁ' B.
83. Case 1. /Taning given a sidey btnd the adjacent angle A,
Herc we have from (3), (4), ajr& {6) of Art. 73,
tan 2 tan b
N, eus A
i{m?a — tan Asin b, j
‘\‘\c‘ofs B=cos bsin A

Thus ¢, a, B{ are determined without ambiguity, and the

triangle is alxmys possible,

B he sm'}ll' which happens when A is very near to 80° and b is very
Dear 0“ Yor 180°, & is first determined, and then use is made of the

formula, ,
™3 fan b
¢ "\ . tan B wina

2 \¥;
N/ 84 Case II1.—Having given the two sides a and b,
Here we have from (1) and (4) of Art. 73,
€08 € =C08 @ cO3 b,
cot A=cot a sin b,l
cot B=cot & gin a.)
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Thus ¢, A, B are determined withoub ambiguity, and the
triangle is always possible.

Tf ¢ be very small, which is the ease when hoth o and b are very near
to O or 180°, A aud B are frst determined, and then use is mude of

either of the formulae

_tanh V!

“oos A ¢ \A
A\

tanc—mn & fan ¢
Teos B

85, Case IV.——Having given the hypolenuse ¢ and gmszde .
Here we have from (1), (), and (2) of Ark. Té,\ '

= ‘f;i'n &
~ Here b, B, A are Jebermined without ambiguity, since
A must be of the site affection as o. Tt will be seen from
these formulse juha}*a certain limitation of the data is requisite
in order to inwite a possible triangle; in fact, ¢ must lie
between ol apd 7 - ¢ in order that the values found for cos?,
€08 B,'aa:\dssﬁinA may be numerically not greater than unity.
Ii¢and o are right angles, A is a right angle, and b and B
aféindeterminate.
&

Ne/

"\."".; .36, In order to solve the trisngle completely by the three equations
. \ ) given above, it is nevessary to look out six logarithme. If, however,
\/ we nse other formulae immediately deducible from them, namely,

tan 36 = -+~tan Mc 4 a) tan ke —a),

= pafinle-a)
fon3B=+ m ..................... (11}
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only four logarithms need be looked out. The latter forms are, more-
over, those 1o be userd when b or B is very small, or when A ig near 80°,
The signs prefixed to the square roots in the first two formulae are
positive because b and 3B cannot excecd 90, In the third the sign is
positive or negative according as a is less or greater than 90°; for if
a iz less than 80°, so is A, and therefore also 457+ 3A.

87, Case V.— Having given the two angles A and B.

Tere we heve from () and (6) of Art. 73, £\
cos ¢=cot Acot B,] ¢ ‘
cos A ¢*0
S e~ SR et SO (12)
cosB E )
co3 b = an? ) ;'\\ /

Here ¢, o, b are determined without ambiguity. There are,
however, limitations of the data, rgqliis{tc in order to insure a
pessible triangle ; for, as cos @ and eos b must be less than unity,
it is necessary that cos A shqujidJSe less than sin B, and cos 8
than sin A, numerically. OF “eourse if one of these conditions
is satisfied, so is the othé€ry since sin®B - cos? A=sin? A~ cos? B.
First suppose A less than 90°, then cos B is to be numerically
less than cos {802 -\h, and hence B must lie between 90° —A
and 90° + A; pext/suppose A greater than 90°, then cos B is to
be numerically Tess than cos (A~ 90°), and therefore B must lie
betwcel;.ez-,\ﬁl)" and 180° - {(A— 90°), that is, between A-90°
and @‘L; A

- ~f\?hen one of the three sides is found to be so small that it cannot be
PG “ﬁlcula’tcd aceurately from its cosine, the following modifications of the
\/ above formulae (requiring only four logarithms) should be used : -

_ sin (A+ B—@
tande= + N "oos(A-B)

R
. tando= +ian J(A+ B—807) cot (B - A+90%),
tan 3b= +~/tan F(A+ B —90°) tan HB - A+ 909

................ (13}
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88. Case VI —Huving given a side a and the npposite angle A
‘Here we have from (2), (4), and {6) of Art. 73,

e 5in @
sln 6= -——
ST A
L sind=tan g cob A L s {14}
. cos A O
sinB=—— )
COS o £\

Now there is only one angle between 0° and 189‘1.@111@ hiag
& given cosine or a given tangent, but there are iy general two
angles having a given sine. Hence an elemensisf~a spherical
triangle is determined wuniguely when its tangedt or its cosine
is known, but ambiguously when only its‘sthe is known. In
the present instance all three of tho ﬁ&‘éght parts have to be
inferred from their sines, and so thefe)is a treble ambiguity ;
from this it might be supposed phat thera are six different tri-
angles satisfying the data, buba HMetlo consideration shews that
there are only two, Of qours{é sin ¢ must be less than sin A,
or the value obtained fotsaih ¢ would be inadmissible. When
this requirement is eomplied with, there are two values ad-
missible for ¢; sorresponding to each of theso there will
be i gencral okly one admissible value of %, since we must
have cos¢= €03.a cos b, an equation determining b by its cosine,
and therefore uniquely; and likewise only one admissible
valuc,of\B] since it is determined by its cotangeut, and there-
f({;“u,ﬁique]y, from the relation cos ¢ = cot A cot B.
~Thus if one trianglo exists with the given parts, there will

triangles with the given parts.
We say in genernl in the preced

) ing sentences, beeause if @ = A
there will be only one triangle, unloss & and A are each right

angles, and then 5 and B become indeterminate,
It is easy to see from a fi
in general,

For, suppose BAC to bs a triangle which satisfies. the given

gure that the ambiguity must occur
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conditions ; produce AB and AC to meet again at A'; then the
triangle A'BC also satisfies the given conditions, for it has a
right angle ab G, BC the given side, and A’ = A the given angle.

If @ =A, then the formulae of solution shew that ¢, 5, and B
aro Tight angles; in this case A is the pole of BG, and the tri-
angle A'BC is symmetrically equal to the triangle ABC.

If @ is a right angle, which involves that A also be & right,
angle, B is the pole of AC; B and ? are then cqual, but may
have any valuc whatever, N

Certain limitatious of the data are Ieiiuiéi te int order to insure
a possible triangle A and ¢ musthiave the same affection by
Art, 75 ; and, in order that the va:hies of the sines given by the
iormulae of solution may beBBbween —1 and -+ 1, it is neces.
sary that sin ¢ be numerieglly less than sin A; hence ¢ must be
less than A if both arq"a}use, and greater thdﬂ'l A if both are
obtuse, \\

When any of the souaht parts are such that they cannot he caleulated
with anflicient acQumcy from their sines, the following modifications of
thie formulas Kft.olutmn should be used :

o \Jom (457 — 3e) = +n/tan 4 (A~ @) Got H{A T @),

§” ST 1L, ) S S 15
) tan (457 - 3b) =+ sin(A+a) e

S

"\' tan (45° — 8} = 2 vtan 3 (A~ @) tan A + o).

) Theae supplemental formulae, and those of Case 1V, are given by
Cacvour. =

89. Application of Napier's analogies, Col. CLARKE, in his
work on Gesdesy, p. 43, points out that in three of the cases
—_— TR

...\

“* Prigonometria, §§ 1030-1035.

WA
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the solution of the right-angled triavgle may be considerably
shortened by making nse of NAPIERS anzalogics.

Suppose, in the first place, that the sides @ and 5 are given,
Write V for 90° - A, and we have from the first two analogics

cos (a — b) 1_+tzm B -V)

cos Jia 0~ WA B = T vy O
sin 4 (2 — | - I-tand(B+v) O,
| s?i‘((a—-}-%: tan (A - B):'i‘ﬁ—_ta,ﬁ%{%é};”.”'(17)
whence the following, \:
tan $(B - V)=tan }a tan 00" ... (18}
tan } (B+V)=cot 1a fan s (19)

when these formulae are used to find’8 and v, only two
logarithms are looked out instead wi\four. From these also, if
A and B bo given, o and ¥ are \oasily obtained, multiplication
and division of the present{fcimulae leading in fact to the
formulac given under Case§

Again if the sids b untl*the adjacent anglo A be given, we
use the third and fodibth of Narmrr's analogies, which in this
case take the form“,\

% Man Be+a)y=tan 3b ot JV, ................. (20}
yo  Wand{e-ay—tanfbtandv, ... (21)
where a8ain the factors on the right are only two in number.

2o
gg:.‘we shall now give somo examples of the numerical
@olution of right-angled spherical triungles.

Though in thiz and in the follawi

ng chapter seven-figure logarithms
are msed, it should he beroe in min

d that for many practical purpeses
logarithms to four or five figares are quite sufficient. Tt is useless to
introduce into a caloulation g degree of acenracy greater than that
attained in the mezsurement of the elements which constitute the data.
In navigation, for instance, where augles cannot be messured with any-
thing like the precision of sstronomical or goadetical observations, it
would be waste of time to employ wany-figure logarithms in the caleula-



§921 SOLUTION OF RIGHT-AKCGLED TRIANGLES, 61

tions.  Of course, with & snall number of decimal places, the difficulty
of finding & small angle from its cosine, or an angle near a right angle
from ity sine, will arize more frequenily, Bub the supplemental
formulue designed to meet such cases may then be employed, and will
give as cluse an approximation as is necessary.

N\
91. Example 1. (Ywen A
. ¢\
=317 48127 b=59" 44' 16", ©=90" o\
To find ¢ we have \ o
COS 2= COB o 00S B, (”'5
L cos37° 48" 12"= 0'8976097 , :
L cosd” 44’ 16"= 9-7023945 A\ N
I cos ¢+ 10= 186000872 \
e=86" 32° 4", N

To find A und B we have <
tan $(B - V)= ta-n‘ga}an 15
tan 3B V)=cdobys tan 38,
where V gtunds for 90° - A, A\ )
L tan }6=L tan 20° 52/ §“% 9-7501412
L tan ju=L tan 18° g0 = 9-5345452

L tan 4B 1 V) = 10-2245960
L@n HB-V)= 92036864
HB+VI=54TI 457, YB-Vi=11°T7 30",
B==70" 1y N\",\” V=48"4"15", A=4!" 55 45"

92. Examplg"’zf (iven
AD55° 827 457, 0=00°, ¢— 98" 14’ 24",
To ﬁudi a\x\tne have

W sing=sincsin A,
O L sin98° 14’ 24"= 0-9054032
AN L sin 55° 32 46" == 0-0162523
7\ -
a\'4 Lsine +10=189117255
) 2

@ =54 41" 35",
" To find B we have
cot B=cos ¢ tan A,
Here cose se negative ; and therefore ot B will be ncgative, and B
greater than a, right angle. The numerical value of cos ¢ is the same as
that of cos 81" 45 36",
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Leos81° 45 36"= 9-1563065
L tan 55 32 45" < 10-16361 02

L cot{180°~ B)+. 10 = 19-3190167
180°-B=78° 120 4
B=101"47 567,

To find & we have tan b= tan ¢ cos A A

Hers tan ¢ 4 neftative 3 and therefore tand will he negﬂ.:ti{;&\
greater than s quadrant.
Ltan 81° 45" 35"=10-8301867 N
Lcos 55> 32 45" = 0-752629] D
L tan(180° - ) + 10:-20-5018 “‘3\
180° - b= T5° 3%’ 2"
b= 1043\)@8"
93. Example 3. Fiven A
A=46"15 2%, C=909va=42° 1§ 457,
To find ¢ wo have o\ ""
= Bin g
L i8N0+ Lsing — | sin A,
104 8in 42° 13" 45— 19-8281272
W Lsinde® 15 25— _9-8585065
'\\.} - Lsinc= 9-9693207
\ o\ ¢=68" 42" 59" or 111°17" 7,
To find 'b.}'\’e,ha.ve sinb=tana cot A,
\</

Ltan 42° 187 457 99591083

x:\;w L cot 44° 35 25"= g ‘9509339
'S M

\“/
N\

L 3

Leind+ 10:19-9431"5%5
b=60° 38 1t or 118° 23’ 507,
,'\"'3’ Te find B we have sin B 03 A

b
r‘\‘,/ Lo

} LsinB=10+LcusA-Lcoaa,
10+ L cas4pe 157 257 19-8307454
L cos q2° 18 45— 9-8689239
LsinB= 99708165
B=gy 13 47" or 110° 4 135,

f§92

N

2.
add b
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94, Example 4. (Rmivy, §32, No. 12,) :
Grven e=37" 40' 207, a=37" 40" 12", C=90".

et a)=587" 407 167, Yle-a)=0"0 4,
Liand{c+a) =988766 L sin{e ~ 0} =5°58866
Lamfle-w) =528763 Lain{c+ ) =9-08563 ~
L tan?ib =5"17529 [-tan24{B =5-60308 A
L tan?{45° — LA} = 539997 ltan 1B =780152 ¢\
Ltavih ="T58765 iB= G721°46" NN T
Ltan (45° - 5A}=7-69999 B= 0°a3 32 \
1b=0013 18 b= 0726 364
A= IT 14 A=81 2080

X 3
W

95, Bxample 5. (Rur, § 32, No. 6.)
Gigen  a=34" 6 13", A=34"7 41", G=90"

A —p=0°" 1’ 287 ~’A}a\=68° 13’ 54"
FA-a)=0"0 44" At a)=34° 6" 577
Ltan J{A-~a) =6-52003 Lsfn A-a)  =6-63008

Ltan d(A4 ) =983088 Lsm {A+a) =0-D6788

Ltant (45" — Le) =6-49813 ,.}ff“ § tan?(45° - 3 b} =6'B6218
Ltanz(45° - 31B)=6'15981 ™ L tan (45°— 31 =833109
Lt (45° - 4o) =5-24008 45°~ b= 1° 13 40"
Ltan (45°- }B)=%8 g‘g b=87° 32’ &
a w»t._« N Mo c==§7° 5§ 0"
o 4119 B=88° 37 22
N <
,\' EXAMPLES IIL

Prove\t?hg.rclatmns contbained in hxa,mplea 1fo & for a triangle ABC
in whithuthe angle O iz a right angle,

'\*1. m%c 5in®}n cos?dh + cosia sin? 3,
;“2. tan {e+ a)tan §c - a}=tan®3b.

3. sinfe - b) =tan21A sinfe + b).

4. sina tan JA — sin b tan 1B =sin{a —b).

&, sin{r —g)=sin & cos a tan {8,
sin (¢ - a)=tan & cos ¢ tan yB.
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-4 “/B. If ABC be a spherical triangle, right-angled at C, and cos A=cnslg,

shew that if Alenot a right angle, b+ e=1r or =, according as b and ¢
are both less or both greater than 1.

1. If a, 8 be the arcs drawn from the right angle respeetively perpen-
" dicular to and bizecting the hypotenuse ¢, shew that

sin?le(l + sinfe) =sing.

8. In a triangle, if C be a vight angle and D the middle point qf\AQ.
shew that e
4 cos®4r 8in 0D —sinfe + sin®h. « \
-~ 8 In a right-angled triungle, if § be the length of ”thé’ Wre drawn
from C perpendicular to the hypotcnuse AR, shew thab O

cot 8=,/ (cotPe 4+ cot2h). e

~ 10. OAA; is = spherical triangle right-angled %M, and acute-angled
at A; the arc AA, of a great circle is drawn“perpendicular to OA,
then AA; is drawn perpendicular to, OBy, “and so on: shew that
AAny vanishes when n becomes idflnibe; and find the value of
cod AR cos AA; cos A, ..., to infinifyM 4
*" 11. ABC is & right-angled spjﬂé;‘iéﬁl triangle, A not being the right
angle: shew that, if A=a, thetg and b are guadrants,
A2, IF 8 be the length of “the are drawn from G perpendicalar to AB
in any triangle, show that
cos § =;x(%uc c{eoshr +- cos?h — 2 cos o cos b eoz o)t
£13. ABC is ?.Ev\}at cirele of & sphere ; AA’, BB/, CC' are arvs of
great cit'ulesj.dlszn at right angles to ABC and reckoned positive when
they lic anfbhie same side of it ; shew that the condition that A, B, ¢’
should lie in a great cirele is
' :.\'.; /" tan AN sin BC ¢ tan BB’ sin CA + tan OC sin AB =0,
531*4%47. Perpendiculfws are drawn from the angles A, B, G of any triangle,
) meeting the opposite sides at b, E,F respectively : shew that
tan BD tan CE tan AF = tan DC tan EA tan FB.
15, 0.7:3 Oy are tf.wo great circles of a sphere at right angles to ecach
other, P is any poiut in AB another great circle. OC{=p} is the arc

perpendicular to AB from Q, making the angle COx(=¢) with O

EngszNal?aeoaéci 3;J’erpcndicular to Ox, Oy respectively : shew that if

cosatanx+sinata.ny=tanp.
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16, The position of a point on s sphore, with reference o two great
vircles af righl angles to each other as axes, is determined by the
portions £, ¢ of these circles cut off by great cireles throngh the point,
and throngh two peints on the axes, each yr from their point of inter-
section : shew that if the three points (8, ¢), (¢, ¢'), (8%, ¢} lie on the
same great circle

tan ¢ (tan &' - tan %)+ tan ¢ (ban 67 — tan 8) -+ fan ¢”(tan & — tan #)=0,

angles to each oilicr as axes, by menns of the portions of these axes\enit
off by great vircles drawn through the point and two puints onf¥heé ases
each 907 from theiv intersection, shew that the equation? Py b é,rreat
eirele is N v

fan g eot o+ tan peot §=1. \

:!_& In a; gpherical trinngle, If A =::;, B= g; "?I'Q\'C = ;_r’ shew that
QJ.‘ZJ-!-C:Q-- ..\v
EXAMPLES\IV.

Solve the trinngle in the following: ses ¢

L Given b=137" & 48, WA=147° 254", C= 90",
Resuits: c= 47° 57 147, © a=156° 10° 84, B=113" 28",

2 Given c= 61° 4GW, a= 4073120, C= 60
Results: b= 302807207, B= 61°50° 28°, A= 47°5e 21"

3 Given A= 36% B= 60 C= 90",
Results: pk B0° 547 185, b= 81°43" 8", ¢= 57" 21’ 38”5,

4 Civen\§4 59°28' 27", A= 66° 7 20", C= 90",
Revdfs™e= T0° 23 49", b= 48°39' 18", B= 52" 50° 20",

O8Y  c=109 36 18", b=131"20° 4%, B=127 9" 40"

“xw
,\.f‘;" EXAMPLES V.

W1 If ABC be a trian gle in which the angle C is a right angle, prove
7 the following relations

(1) smPa+sin?b-sinZe=sina=in? b

{2) cos? Asin?e=sin (¢ ~a)sin (c+ o)

{3} =sin®A cos?e=gin (A —n)sin (A +a).

{4) cos®A+cos?e- costa=cos? A cos’e.

{5)  sin (@+b)tan Z{A+ B}=sin{z —b) cot {A - B).

AN
17. If a point on a sphere be referred to two great circles at right

N
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. coshteoaa
_;'(B} sin{A+B)= [+oosbeog

. cos b —cosa
st (A~ B = b cosar

2, If CD be the great circle drawn through C perpendicular to t]}e
< hypotenuse AB, QN
: gin? CD = tan AD tan DB.

/ &

ne
. 3. A ship starts from a point on the eguator and sails al\a “great
ws cirele, entting the equator at un angle of 45°; find how wutel she hag

changed her longitude when she has reached a lutitudi(gn“ HE).
LR UL T, 1868)

&
. 4 Aand B are two places in the I]Ol't.hckqi\}\]elﬂisphel'ﬁ, whose
“ latitndes ave A and N, and the difference of \&k\ir,]_ungitudes { (where
?is aupposed less than 90°) ; shew that, if &\@ sailing by the shortest
courge from A to B incresscs her lu.titu{’e( ¢ whole way, tan A eot )’
must not be greaier than cosi. (. U. L, 1898.)
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CHAPTER YV,
WA
SO0LUTION OF OBLIQUE-ANGLED TRIANGLES, \ \

96. The solution of oblique-angled triangles may be(‘maxsle 1
some cases to depond immediately on the soltlti(k af right-
angled triangles; we shall indicate thesc cage§ Ycfore con-
sidering the smbjcct generally. )

(1) Suppose a triangle to have one of ;ta\gweu gides eqmal
to a guadrant.  Tn this case the polary thano'le has its corre-
sponding angle a right angle ; the po]ar trlang]e can therefore
be solved by the rulos of the prceedmg Chapter, and thus the
elements of the primitive tIldng]‘e become known.¥

(2) Suppose among the given clements of a triangle there
are two equal sides or tawo equal angles. By drawing an are
from the vertex to tha\amddle point of the base, the triangle
is divided into twg\eqm,l right-angled triangles ; by the solution
of one of these nahpangled trianglos the required elements
can he found

(3} So 0% among the given elements of a triangle there
tre two.8idés, one of which is the supplement of the other, or
two fmvl“es, one of which is the supplement of the other.

s

i"‘Quad.rant‘.zal triangle, The following are the formulae for the guad-
}ﬂﬂt«ﬂ triangle in which the side e is a quadrant:

0sCt+eosAcos B=0......... {1). tan B=tanbsin A n
sin B=ain bsin 2 tan A=tanasin B

sin A=ajn mgin C} o2 cosCreotacoth=0.......(5).
ta.nA-!—coabta.nC:[}} (3) cosb=sinmcos B ..‘.{GJ;

tanBicosatan C=0) cosa=sinboosA) T
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Suppose, for example, that b+c=m, or else that B+C=r;
produce BA and BC to meet at B (sce the first figure to
Art. 43); then the triangle B'AC has two equal sides given, or
else two equal angles given; and by the preceding case its
solution can be made to depend on the solution of a rightd »
anglod triangle. O\

We now proceed to the solution of oblique-angled trianigles
in gencral.  Thore will be six cases to consider. >

7°%a

97. Case L—Having given the three sides, A
908 — c0s b cos ‘) and “s?}n\ilar formulae
sl &rsin ¢ ‘
for cos Band cos G. Theso formy]lae, howevet, arc not in a form
adapted to logarithms, and would q‘uj}e to be modified by
the introduction of an auxiliary aigld " Thus we may define ¢
by the relation tan ¢ =cos csin b seekr, and the formula for cos A
then reduces to cos A= .39;3_1-{_\3;11_@;4,). ..................... (1)
~lNsin b sin &
But this is an unncceas}{iiljr lengthy way of arriving at the
desired results, and_itJjs mnch better to uso gome one of the
formnlae already.adipted to logarithms which we have in
the expressiog'\i‘cf the sine, cosine, and tangent of half an

angle givem\in“Art. 50, TIp selecting a formula, astention

should be-prid to the remarks in Plane T rigenometry, Chap. XIT,
towards\the ond. .

:IQ;.&}igation, the formula,

coa1a_ M0{s—Blsin(s—¢ ;
R\ O S A~ Csindsine 2 @
:'\'.w'is‘ z.i.lways used; and there are specially prepared tables*
\”\‘ W glx’lng the logaribhln of sin’fA, that is, the halved versine (or
haversine, as it is called) of A for valnes of A corresponding
to every fifteen seconds of are, An approximate caleuiation
can thus be cffected with greab rapidity.

—_—
* Bee InMaN's Nag

Herc we have cos A=

tical Tables, or BAPKR'S Prasctice of Navigation.
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When, however, haversine tables are not available, it is just
as convenient to use the formula

. _ fsin(s-8)sin(s-¢c)
tan %A_\/ SRS (5 ) . veeerenn )
and when it is required to find not one only, but ali the angles N\

of the triangle, the tangent expression should always be used, .
as 1t involves looking up the smallest number of logarlthms\’ \)

The methad of procedure is as follows : U
N & (Y ETT G B
any = Sns BN

&/
It will be seen afterwards that #, as here deﬂn\i, is the
angular radius of the inscribed cirele; but its Jtterpretation
docs not concern us at present, Dctormzm\'t.he logarithm

of tan #, and then use the formulae \“
tanr tanfr ~‘ v _tanr
ta. = b
n A= sin (5 — ¢ tan 5B= sin (s — w10 = §in (s —¢) ~(8)

8, Numerxcal Emple T:}k'ea;for example, the triangle in
which we have given \™

a="TOAI 20"
M9 240 107
£N\P=38" 46' 107,
The eslenlation is as faks\w’
2:=158° 24’ 40
RS Ca= 707127 20°
AN/ s—n= & 5% O
P\ s—b= 29° 48’ 10"
\V §~e= 40° 26° 107
NN (5 - 0) ~0-1927342 L tap 3A = 101616852
Vs (= - 1) =9-6963704 Ltan 3B = 0:6580470
08" Lsin (s-}=08110768 Lian $C= 95424406
Q )l 87010814 IA= 567257 38"
L sin s =9-0022165 iB= 1P oy

iC= 1913 24"
L tan?»=%-7088349
Ltan»=93544174 A=110°51"186*
B= 48°56" 47
C= 38°96'48"
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99. Caze IT.-—Huving given the three angles.
cos A+ €08 B 605 q, with similar for-
sin Bsin G
mralae for cos b and cos ¢, and this may be adapted to logarithms
by introducing an angle ¢ such that tan ¢=cos Gsin Bsec A%J
cot Csin(B + ¢) .
anBsnd (6}
It is botter, however, to use some cne of the exptew(}ﬂs for
the sine, cosine, and tangent of half a sido, given iy Art. 56.
Thus a single side may be convemcntly calcuL'{ted from the

formula v
1. c0s § €08 (S = A) oy
tan pa = ( 505 (8 ~Bjood @ gy (M)

When all three sides are roguiredy{th t\ shortest method is as
follows. First define cot R a.nd calgulate its logarithm by vhe

Hers we have cosg=

then Cosd=

ralation
co? R 5 (S A)cos (8 - B)cos(8— C) (8)
S P IR
and then find a, b, e jﬁpom the formulae
cob R a0\ b1p cot R cob R

cot ia = woblh=_——" " _ L.
z cos(S\gf‘“ ™ cos(S - BY cobze= cos(S-C) ~(9)

The workshould be arranged as in.the numerical example
of the pré¥itus Article. The similarity of these two cascs to
one fi.tﬁb!;her iz obvious. It will be shewn later (Art. 122) that
R o8 (the angular radine of the circumseribed circle of the

A’Q\ia‘figle.
\' . 100. There is no ambiguity in the two preceding cases ; the
\’"‘ N triangles, however, may he impossible with the given elements.

101. Case IIL.— Having given two sides and he included angle
(a, C, b
By Napirr’s analogies

tan 2 (A + B)= 25 2(¢ = 1)
1 3{A+B) cos%(a_i_b)cotéc,. ............. (10)
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sin §{a — )
sin (e + &)
these determine 3(A + B) and 1{A — B), and thenee A and B.

gingsinC in
ginA ?

tan 31{A - B)= o0 ;.. {1I)

Then ¢ may be found from the formula sin ¢ =

thiz case, since ¢ is found from its sine, it may be uncertain Oy

which of two values is to be given to it; the point may
sometimes be settled by observing that the greater side Jof
& triangle is opposite to the greator angle. Or wa, may
determine ¢ from any one of DELAMERES analogies, for
instance equation (45) of Art, 83,
e TEL RS
cosl =8 DSEC A (12)
* cos3(A+B) L™
which gives ¢ without ambiguity. O
162, Numerical Example. Ta.k&s.’fn:ﬁr example, the triangle in
which we have given :v
=68 20' 257, B=3RIS 15", C=117°12" W
The calenlution is as followssd
He-by=8" 1’ 5”,'g§{g\+ B)=60° 19' 20", 3C=58" 38 10",

L sin 3a - ) X B:1445280 L cos Jia—B)= D-0057335
Lsind(a+dis 99356316 Leosda+Bb)= 96847120
SO 905964 10-3010215
Aeot 1C= 97855690 LsiniC= 99312422
§on H{A - B)= 8-901165¢ 0-6250542

L Wtan J(A 4 BY= 10-0865005 Leos }A+Bj= 98018015

LY A_Bi= 5° 35 47"
A L cos jo= 98240527
O HA+B)=5 —48° 107 297
Qz W A=36° 16 15" ’4‘2:%0‘ v
B=45° 4' 41 -

103, We can also find ¢, without previously determining A and
B, from the formula

cosc=cosacos b+ sinasin beos G, .unnnnnn. (18)

N
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“which is free from ambignity. This formula may be adapted
to logarithms * by introducing an auxiliary angle ¢ defired
by the relation

tanf=tandeosC; .ocoiiiiinn. (14) N

the expression for ¢ then becomes

cos b cos(a - b‘)k

cosc=conb(cosa +aingtan &) = os

W(05)
l o ‘
One of the angles may at the same time bg) “etermined

without ambigunity ; for if we use the sccond” \f the formulae
of Art. 49 we get

\Y;

co’oB—— {cotl»mna—QQ;\acosC} ............ (16}
_cotC WY
o u,am(a ) U (17}

v‘,

104. Numerical Exa.m,gle. 'Ii, for example, we consider the triangle
which we have just snved otherwise, our first step is to determine &
from the formula tan ¢ >=tan b cos C,

Here cosC s négr;y‘twe, and thercfore tan 8 will be negutive, and ¢
greater thag u\@ht angle. The numerical value of cog G is the same
as that of cof 627 477 40",

\,,“ L tan5=10"1119488
L eos 627 47" 407 = ‘J 6600012

N b

o L tan{180° - ) 4 10= 197720400
N\ 180°— 6= 30736 33",
N\ thercfore § =145° 23 27",

Next we determine ¢ from the formula cose=""" beos(m - 8)
cos f

Here cos @ is negative, and therefore cos ¢ will be negative, and ¢ will
be greater than a right angle, "The numerical value of cos 8 is the same
ag that of cos(180° - #), that is, of cos30° 36' 33" : and the value of
cos(a ~ ) ia the same aa that of cos(§ —a), that is, of cos51° 3’ 2.

¥ Compare formulae (22) and (28} of Art. 53.
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Lcosbh= 9-7863748
Lcos81° 3 2= (1919060

18-9782808

L cos 30° 36" 38"= 00548319

L eos{180° - c)= 9-04:34489
1580° - ¢= 83" 39 17" I\

e= 96° 20 43"

Thus by taking only the nearest number of seconds in the tables tbe \
two methods give valucs of ¢ which differ by 17; if, howe\'e(,\we
estimate fractions of a second, the methods will agree in gl\'mg‘a.bou’ﬁ
43} as the number of seconds. 4

£

105. The mothod of Art. 103 is really eqnixralent‘f§}\resnl\=irlg the

triangle into the sum or difference of two right-angléd ¥riangles.

B
O F

\

From A dra.‘\ Jﬂw arc AD perpendicular to CB or CB produced ; then,
by Art, 73, %8 CD =tanf coa G, and this determines CD, and then DB
is kl{m. Again, by Art, 78,

o/ b

‘{\ cos ¢ =cos AD cos B =cos DB =D’
\tgﬁs finds ¢. It is obvious that CD is wha,t was denoted by & in
»\; JArt. 103,
By Art, 73,
A,
tan AD = tan G sin CD, and tan AD=tan ABD sin DB;
ths tan AéD sin DB=tan Csaind,

whers DB=g-- 6 or 9—a, according as D is on CB or CB produced,



/N

’o

..\,

\ W

\:

T4 SPHERICAL TRIGONOMETRY. [§105

and AéD is either B or the supplement of B this formuls enables us
to find B independently of A.

Thus, in the present case, there is no real ambigunity, and the triangle
¥ always possible.

106, Case IV. Having given two angles and the ineludud side
{A, o, B). '\:\.
By NAPIER'S analogies, O

_eosH{A-B) ¢ “
tan {a+ )= o6s JATE) tan 25, o {18}
_p=niA—B) N
tan $(a - ) =S SATE) tan 20‘ .............. (19)

these determine 4{a + ) and L{a - b) @d\bhence ¢ and b.

Then C may be found from the formula sin C_ﬂis_i_l n;nc

in this case, sinee C is found from its sine, it may he nncertain
which of two values is to b’e given to it; the point may some-
times be settled by observmo- that the greater angle of a
triangle is opposite 4u the greater side. Or we may determine
C from any ong pf mLAMBRE '3 analogies, for instance equation
{45) of A.rt GZ&)\\
o sinjo=" MA+Bloosye .
P\ cos La+b) °

whmﬁ\aetermmes C without ambiguity, since 4C cannot
h{c&ed 80”,

107. Or we may determine C, without previously determining o and &,
from the formula cos C= - cosAcos B +8in Asin Beose.

This formula
may he adapted to logarithms thus :

cot C=cos B{ — oon A + sin A tan Beoze)s
amsume cob g=tan B coae; then

cosC=cos B( ~ ~cos A+ oot ¢ sin A) = =2 cos Bpin{A-¢)
sin i
thia is adapted to logarithme, ¢

Q)



§109] SOLUTION OF OBLIQUE-ANGLED TRIANGLES. 73

108. Or we may treat this case conveniently by resclving the triangle
into the sum or difference of two right-angled triangles.  Irom A draw
the arc AD perpendicular to OB {see the right-hand fignre of Art. 105} ;

£ A
then, by Art. 73, cosc=cot B cot DAB, and this determines DAB, and
A
then CAD iz known, Again, by Art. 73,

eos AD sin CKD —cosC, and cosADsin BRD: cos B

cos G cos B e .
SnCAD = snBAD + 'his gives C. K

It 15 obvious that DAB is what was denoted by ¢ In the prwious
Article.

By Art. 73, \\
tan AD = tan AC eng CAD, and tan AD=tan AB cnsBﬁe‘D
thus tan fcom GAD =tanccos g, SA\D

therefore

where CAD = A— g ; this formula enables us to find % tndependently of «.
Simj.leuly we may proceed when the perpepdiauinr AD falla on CB
produced {see the left-hand figure of Art. ]Oo’}..
Thus, in the present case, there is no, teal ‘ambignity ; morcover the
triangle is always possibie. N

~ <
.,.

109, Case V.— Having gum Yo sides and the angle opposite
oue of them (a, b, A). &
The angle B may %\&bﬂnd from the formula

R “; gin B= -1-—bsmA .................... 21
N\ < 1T 2 .
and thon Cand’c may be found from NAPIER'S analogies,
\v .

N miooSinBe=b) o my 29
”.j\ tanJC» s]n%(ﬂ,-{-b)cobf(A )) ( )
oY sin }(A+B) AR 23
@ tan fe= SAL(A= B)t n%(a, Y. ( )

In this casc, since B is found from its sine, there will some-
times be two solutions; and sometimes there will be no
solution gt al], namely, when the value found for sinB is
greater than unity, :



e
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110. When two values of B present themselves, in order
that either of them should be admissible it is necessary thab
it should yield positive values of tan3C and fanje when
substituted in equations (22) and (23). Now sini(a+5) and
¢in L(A+B) are always positive, and L{a-¥ and 1(A-B){
are numerically less than 90°; accordingly what is requized
reduces simply o this, that o~ b and A~ B should be ‘c\if\t"ﬂ\e
same sign .\

It is not difficult o shew that this mecessary conditian is also
a sufficient condition for the existence of a briangiiz having the
elements @, 5, A, B. Let C and ¢ be as defiGéd by cquations
{22) and (23). © being by hypothesis\Ness than 1807, a
triangle can he constructed having th&lelements 4, b, C; ana
if its remaining elements be callod &5\ B, ¢/, these must satisf
equations similar in form to eqfistions (21), (22), and (23).
Hence it is easy to see thag W' =A, B'=B, ¢ =¢ and that
thercfore the triangle sos tonstructed satisfics the original
data. N

Thus the problem, of finding a triangle with the given
elements has t\yo}solutions, one solution, or is impossible,
aecording as i{o't{h; one, or none of the values of B are snch as
to make AxB and & - b of the same sign. We shall return
to this subject, and examine it- in detail, in a subsequent

Artigle; \
§h1 Numerical Bxample. Given
a=50° 45' 2, bH=B0° 12 407, A=dd> 92 10%

.

N The calculation is as follows :
Ha+by=50° 59 O, hla-b)= —0° 13’ 417"
L sin &=99707626 B,= 57" 34'51"4
L sin &= 98880056 B,=122" 25" 8"6
0-0817676 A= a1y
L sin A=9-8446525 A-B =13 12 41"¢

L sin B = 99264195 A-B,=-78" 2 58”6
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There are two solutions, since A —-B;, A — By, and o — b are all negative,

HB, - A= 6° 367 2077 1tB,- A)=39> 1’203
LB, +A)=50° 58’ 3077 3B, +A)=83" 23" 39”3
Lsin (b —al= 92050952 Lsini(B, +A)= 98005503
Lein 4(b+a)= 99374577 Lsin}(B, - A)= 00608266
09676575 0-8295137
Lcotd (B, ~ A)=10-0362705 Lsind(By+A)= 80671072
Leot{B,— A} =10-09124 64 Lam‘{B -A= 9 99]039 .\
0 1930023,
Ltan{b-a)= 90103523‘
L tan 4 C,= 142030080 Ltange = mw’zvsﬁo
Ltan }3,= 9-3588830 L $an} ;= \34087558
3C = 57° 58" BH™3 %47 39 8”3
1C.= 12° 52" 15”8 ﬁ}g 14° 22° 324
C,=115" 57 50”6 y \ £, =95 18 1678
C2 — 2‘50 441 L 1H 6 4 R \ N Cg 285 41’! 4}!8

112, We might also treat this cag?e ‘eon vemently by resolving
the triangle into the sum or dnﬁlerence of two right-angled
triangles, N

%

S V] D '

N\
Let\?A 5, and let GAE =the given angle A; from C draw
Qa \Perpendicular to AE, and let CB and OB'=e; thus the
~\figure shews that there may be two trinngles which have the

\ given °lements Then, by Art. 73, cosb=cot Acot ACD this
finds ACD. Again, by Art. 73,
tan CD = tan AC cos AaD,
aid  fan OD = tan OB cos BOD, or tan CB' cos B0D;
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A A s ,A
therefore tan AC cos ACD =tan CB cos BCD, or tan CB eos BCD
A A
thig finds BCD or B'CD.
Also, by Art. 73, tan AD=tan ACcos A ; this finds AD. Then
cn3 AC = cos CD cos AD,

O\
cos CB =cos CD cos BD,
or eos CB =cosCDcos B'D Y
] '\
, AC _Gos CB wwCB \“/
therefore oS A  eosCB W
cos AD— GosBD ' cosBD’ <‘~.},

this finds BD or R'D,
~\
113, Reidt’s method of solution. When welse the notation
Adn=4ds A-p= 4,(3;:}"
B+b=4s, B-l=4d7} ...cooiiiinin (24)
Che=4s, O loid’,]
we have seen that the first two, oi‘ REIDT’S analogies {Art. 69,
squations (63) and (64) ), ta}m She form
tan?(45° — 5"y =eot (s — § )mn(a sVtan{d — d)tan(d +d'),...(25)
tan*(45° — d”) = tan (s < K tan (s + ¢ yoot (d — &) tan{d + d’)....(36)
When, now, th&gﬂzﬁﬂes of B have been determined from the
sine formula, e may take onc of thom, say that which is less
than 90°, 5U‘1E1 stbstibtute its value in the right-hand members of
these dmﬂegws from them we can then find the corresponding
values ¢ ,q\f 5" and ¢, and thence those of C and ¢

‘\Q:]se eloments C and ¢, of the other triangle, that which has
B, obtuse, are then derived from equations (67) and (68) of
~\ VArt, 69, namely,

\, \3 . tan®d’y =tan(s - ¢)cot (s + sV tan(d — &) tan{d +d"),...(27)
tan’s’y =tan(s - §)tan(s + ¢ tan(d - &) cob (d +d')....(28)
The great advantage of this method is that, once B has been
determined, only four logarithms have to be looked out to

eomplete the solution, instead of six as in the other methods.
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114, Numerical example. (Ret, §37, No. 3.)
fhven B=T70° 40, o=40°20), A=40"

L sin b=9-47479 B;= 89 3¢’ 30°
Lsinn=9-81106 B,=110° 25 30
0-16873
L sin A== D-R0807 .
L sin B=9-07180 O
§= 33° 387 s--5'= — 14° B8 37" O\
d'= — 07 16° 22 d-d'= @1rer 8 N
3= 20 5 : s+s= 55 831 \J
= -0 5 ddd =~ 0° 21 227N
Ltan{s—«} = 942736 (neg.) 45" - ¥'= 0°36" 77 ’
Liat{e }= al‘)(‘h 45° — @i = 4Q° ’>1'-?>(
Ltem{aH} =10°15710 907 - 2= 1N
Ltan(d+a) = 770364 (neg.) 907 - 2= 504 4
Ltan®d5” .- ¥} =6-04306 288" 47" 46"
Lm ( —d") =9-85842 WN2gi= 9° 17 56"
L o, = 4-38358 AT o= 5
L tan’y =9-31050 WO o= 2050
L tan(45° - ¢) = 502153 RS D i
L tan (45° - ") = 902021 - §y=24° 19 427
L tan d,"=7-20179 \\ 9= OF 13 987
L tem s, =9-63528_) 9y, =48° 307 24"
\" —
\ C,=48° B2’ 52
Z’“: _480 95 56"

115. 1t B La,nm?t ‘be determined with sufficient aceuracy from its sine,
the followingfg¥mula may be used :

ﬂm\\ixwﬂa} 008 4 (-4 b}sin J (o — B) + sin b sin%45° - 3A). . (29)

llB* Case VI.—Hawing given two angles and the side opposite
mé ‘of them (A, B, a).

" This case is analogous to that immediately preceding, and
g“'es rise to the same ambiguities. The side & may be found
from the formula
Slnﬂ_‘B smeg (30}

sinA

sind=

LT LITEI R
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and then G and ¢ may be found from NAPIER'S analogies, or
proferably from ReDTs analogies. The formulae are the same

. &9 those used in solving Case V.

117. The ambiguous case. We now reburn to the considera,
tion of the ambiguity which may cccur in the fifth case of this
Chapter, namely, when two sides are given and the, angle
opposite to one of them. We want to learn how we gan itffer

. - . « \/
. from inspection of the given elements whether we arc to
<D

axpect two solutions, one solution, or none. \

The simplest way of making the invcstiga.j' Y is to regard
the construction of the triangle as a pboblem in practical
geometry. A straightforward method,at*once presents itself,
which maust effect the desired GO‘I’ISt[I:{kE}ﬁOII if the triangle be a
possible one ; and when this mpthod fails the significance of
the failure becomes apparent.y

The given elements being A, b, @, we may, since we ar¢
concerned only with the shape and mot with the position of
the triangle, take any great cirele ADA'D’ as one of the greab
circles forming the angle A, and any point A on it as the
vertex of that angle. We then draw the great circle AEA,
making the required angle with the first, and measure on it
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the arc AC equal to the given valuo of & A and G are two
corners of the triangle, and we want to find the third eorner B,
which we know lies somewhere on the first great circle,

Now the angular distance between B and G is a known
quaniity, namely the given value of @; and therefore B
must lie on the small circle whose centre is G and radius e.

N

Accordingly, to construct the triangle, it is only neccssary to

descrihe this small cirele, for B must be one or other of it5
points of interseetion with the great cirele ADA'D" A\ ]

The construction altogether fails when the two citeles ‘do
not meet, and then no triangle exists with the given elements.
This happens when the radius @ of the small citele is less than
the loast, or greater than the greatest, angglaQ\distance of the
point G from the great circle ADA'D. No¥w we know from
Azt, 88 that, if DCOD’ be the great direle joining C to the
pole O of the first great circle, and, l.fC” lie between O and D,
CD is the least and OD’ the greatésb are drawn from G to the
sircumference of that circle.\ Phe angles at D and D are
right angles, and from the' ’fria-ngle ACD it is seen that
5in 0D = sin b ¢in A, whilo(bh# sine of the supplement CD' has
the samo value. Thusuthere is no solution when 6 is greater
than the groater, ot loss than the less, of the two supple-
mentary arcs wilese sine equals sin bsin A, or in other words,
when sin e ig'lesd than sin b sin A, .

When thééircics do intersect, say in B, and By, the triangles
AElc,,‘I\BgC may be solutions of the problem, or they may not.
T}}iﬁjd}pcnds on whether they satisfy the restriction contained

/il definition of a spherical triangle, that each side shall be

Mess than a semicircle. If the side AB,, measured from A along

that one of the ares ADK, ADYA' which is an arm of the given angle A,
be less than two right angles, then AB,C & a triangle satisfying
the data; but if the arc AB,, so measured, be greater than a
semicivele, then the triangle ABC is not a solution of the
problem. The same test must be applied t0 By

A



82 SPEERICAL TRIGONOMETRY. 5117

For example, in the above figure, if A be an acute angle it
is the angle between the arcs AEA’ and ADA,, and therefors
B, or B, will yield a solution only if it lie on the are ADA.
In the figure as drawn both B; and B, comply with this con-
dition, and so there are two solutions. If the interscetiofis™
of the great and small circles were situated ag By and B,
then B, would give a solution, but B, would not,.& Orithe
other hand if the given value of A be obtuse, it Jsheontained
by the arcs AEA, AD'A, and so positions df B arc only
admissible provided they lie on the aac’\éD'A’. Thus i
B, and B, be the interscctions of Jthe) great and  small
circles, there iz only one sclution, naanly that eorresponding
to By; if B, and B, were the int}}séet-ions of the circles
there would be no solution, sigc’é,\;oth these points are now
inadmissible. .

If B, coincided with }k,’p};e triangle would vanish, if B
coincided with A’ the taizj.hgle would become a lune; neither
of these can be clasddd as a solution. Coincident solutions
occur when B, By hoing both admissible, eoineide ; this would
be the case i;F{'A,\vvere acute and ¢ equal to CD, or if A werb
obtuse andif cqual to CD. There is an infinite number of
solutiong when the great and small circles coineide, that 3
whgu\b 28 ab O, and ¢ is a tight angle.

{twﬂl now be easy, by means of the following fignre, to
:"“bxamine every case that can arise, and determine the nueher
O\ of solutions which it admits of.

‘\.f ;3 The more lightly drawn circles in the diagram aze the smal
~\J cireles having centre C and radius b ; there are nine of thei,
\/ typical of nine values of  and representing nine Jjfterent cases

Fach cirele is denoted by a number, and the same nayober
prefixed to the corresponding case in the catalogue of resfdts’
For any particular case we have only to lock ab the mfda
bearing the corresponding number, see in how many pm'nts
it moets the great circle ADA'D, and whether such poiot®
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lie on the particular semicirele on which admissible values
of B must he situated.

L et 1< 90
A4 I A= 00°,
<\;~’Adnnissihlc positions of B are confined to ADA

d (la<cD,- -« - - - - nosolution.
(2)y e=cD, - - - - two coincident solntions,
{3} a=cCD, <h, - - - - - two solutions.
(4, 5) a==h, <180° -}, « - - onesolution.

(6, 7.8 9 e=180"-4 - - - no solution.
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#) It A=90°

In this class of cases A coincides with D, and GD =04, Either
of the semi-circles AA' may be taken as the range of admissible
positions of B, but not both.

(1,2 4 e<b, - - - - - no solutiom\
{5) a>b <180-b, - - - - one solutign.
(6, 8, 9), a=180° -5, - - - nogolation.
(y) It A>90°. O
Admissible positions of B lie only on AD'AT ¢ ”:'g
(1,2, 3, 4) =}, - - - ,\,\ 1o solution.
(5, 6) a>b, =180° -}, - N0 one solution.
{7} ¢>180°—§, < CD, - N - two solutions
(8) a=0D",- - - .-=f‘t>\“fo coincident solutions,
{#) a>CD,- - SNV R - no solutien
H. Lot 5> 90°.

We now take the vertgg:ﬁf the sriangle ab A instead of &
and b is the are AC. &%

The table of resultshis derived from that of Class L by
substituting 1—80°“<b for b, and b for 180° - &.
IIL. Let b =02
 The GA7 CA' are now equal, and circles 4 5 and §
become #eincident. A=0D or GO, according as it 1s acute of

obtuss?; ™
@ If A < 90"
e ':’ (}) a<hA - - _ - - - o SO]llt!imL
\'\\, (2) a=A, - - - - two coincldens so]utJ:DI!ﬁ
N (3) a>>A, <90°, - - - - - two solublol®
~O ©, 7, et) a=90° . . . - nosolutit
\/ (B) If A=90°,

C coincides with 0. Circles 2, 3, 4,5, 6, 7: 8 coincid®
with the great cirele. )
(1) o< 90°,. - . o solutiot

(2,8 a=90°, - - infinite number of solution®
(9} a>90°, - . no golufion
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(y) If A> 90",

{1, 8} a=b, - - - - - mnosolation
{Ty a==b, <A, - - - - - two solutions.
(8) a=a, - - - - two coincident solutions.
(%) a=A, - - - - - - no sclution. )
The student will find it advantageous to make a special o
diagram for Class ITL KON
.'\ ”

118. The umbiguities which occur in the Jast case.n the
solution of oblique-angled triangles may be deduted from
those of the previous case by means of the polax t»rhmg]e

N
EXAMPLES VL (

1. The sides of a triangle are 105°, 90°, &nd 75° respectively: find the
aines of all the angles.

2, 8hew that tan3Atan 3B = {%iv;%?l Folve a triangle when a side,

an adjacent nngle, and the sum@if ‘the other two sides are given,

3. Solve a triangle havisg\given a sids, an adjacent angle, and the
sutn of the other two an‘glq\&

4, A triangle has ﬂ@\ﬂu‘m of two sides equal to a semi-circumference:
find the are joininghthe vertex with the iniddle of the base.

5. If =, b ;ﬁ:wknown ¢ being a guadrant, determine the angles:
shew also t%:i-b‘ if & be the perpendicular on ¢ from the opposite angle,
cos?d = ca&a cosZh.

B, 'if\'lne side of a spherical triangle be divided into four equal parts,
3@‘1 8, 0,, 6, &, be the angles subtended at the opposite corner by the

\Pm‘{a taken in order, shew that
Q v $i01 {6, - ;) sin 8, sin 0,=in (8 + #,)sin 8; sin ;.
!, In s spherical trizngle if A=B=2C, shew thab
8 sin{a + ke)ain?he cos je=ninte
8. In » upherical triangle if A= B=2C, shew thab

8 5int4Ccos s + sin 3C) 008 fe= co2g.
L.8 T, D
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9, If the equal sides of an isosceles triangle ABC be bisected by an
are DE, and BC be the base, shew that

#in §DE =} sin 3BC sec JAC.

10. I ¢ ¢ be the two values of the third side when A, a, bare
given and the triangle is ambignous, shew that

tan Le, tan §e,=tan 1 (5 - a)tan L{b +a) N
)y
EXAMPLES VII, {;}\ -
Bolve the triangle in the following cases : "*:'g
1, Given ¢=90° u=138" 4", =104 41"
Results,. C=1139282", A=14211' 3%, B =/ rel} 15’ §7%
2, Given c=90, A=131° 30, B 1‘30 32

Results, C=108" 40 20", a=127" 17" 5155 \b=113" 49 31".

3. Given ¢=76°35' 36", =50 10*’305“ e =41° ¥ 107
Resulis. A=121° 3¢’ 20°, B=4y" B, C=34" 15" 3"

4, Given A=120"5 28", B= 142" 12' 42, C=105"§ 10",
Results, «=135" 4% 20", b=]44° 377 15", e= €074 54"

5. 8olve the triangle hawmg given two sides and the sum of the
angles opposite to them. .

B. Solve the trmn\gle when the perimeter, the sum of two sngles,
and the third sngle.are given.

7. Solve ;he\ triangle when the perimeter and two angles arc given,



CHAPTER VI. &
CIRCUCMSCRIBED AND INSCRIBED ClRCL]Lh
119, The inccribed cirele. 7o find the angulung achus af the

small eirole inseribed in a given friongle. \\

O

Let ARG ’b.e' thc triangle ; hiscet the angles A and B by ares
meetmg\pjﬁ'P from P draw PD, PE, PF perpendicular to the

sides{" )"
%n the triangles PEA, PFA, having their angles at E and F
“U‘}lt anglos, their angles at A equal, and the side PA common,,
‘“, are oqual in all respects; in like manner the triangles PFB,
\/ PDBare equal ; consequently PE = PF=PD.
And the triangles PCD, PCE, having their angles at D and E
right-angles, the side PC common, and PD equal to PE, are
equal in all espects ; hence CP bisects the angle C.
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Thus the arcs bisecting internally the angles of the triangle
ABC pass through a common peint P; and the arcs PD, PE, PF,
drawn from P perpendicular to the 31des, are all of the same
length. This length we denote by .

Accordingly the small cirele whose pole is P and radiusrd
touches the sides of the triangle at D, E, F, and is thexef@l&%.
called tho inscribed circle of the triangle. ™

From the equalitics of triangles alrcady eqta,bl]s«hed 1’0
follows that AE=AF, BF=BD, CD=CE ; hence BGFAF = half
the sum of the sides of the trlangle =¢; a:nd AF\—‘i a.

Now tan BF = tan PAF sin AF (AT6NS) ;
thus tan 7 =tan fAsin(s —afhl. {1

The value of tan » may be expressed\m varions forms ; thus,
from Art. 50, wo obtain O

ta,n? \/ gin (,s’— b) sin (s — c)
3 o8 ssm (s - o)
substitute this value in (].');”thus

t&n?’:«/{sm(e-a&‘n(s— )sm(s-—c)} o (Art. 51). ..(2)

) \ } sins
. i 1B sin 1
Again sm(s a) = 0 sn} $Bsin 1C
\ sin ZA

by formulq, (11) of Art. 50, and the corresponding expressions
for g}{a};g and sin {C ; therefore, from (1),

No/

(% tanyoS0EBsMiC (3)
\ coslA
A ,hence, by Art, 58, z

/AN

C W tan ¢ N1~ COS8 coa(s — A)cos (S —  — B)oos(S - C)}
Zeos JAeos IBeosIC
N

B T Y W oo - N 4
2005%3\@03%8@057}0 ............. 4)
-—_— . .

* LEXELL (Actn PerropoZirmm, 1782),
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It may easily be shewn that
{c08{AcosEBoos{C = co8S + cos(S — A) + c0s(8 — B) + cos(S - C);
hence we have from (4)

cot:r=%l{cos S+ ¢os(S—A)+cos{8 — B) +cos(8 - )} .....(B) A
120. The escribed circles. % jind the angular radius of the O

small cirele described so as to tvuch one side of o given friangle, ik
the other sides produced,

Y P

Let ABC be the triangle; and §l;fp1;)638 we require the radiug
of the small eirclo which tonchég"BC, and AB and AC produced.
Produce AB and AG to megt ¥ A" ; then we require the radius
of the small circle inscribe ¥n A'BC, and tho gides of A'BC are
& T—br—¢ respecj}ivéi&?. Hence if r, be the required radius,
and s denote as usya\,}\\g {@¢+b+¢), we have from Art. 119,

) <" ta.n'rl:tangsin Be veeinirerrrarinrn ...{6)
AN .
From this result we may derive other equivalent forms as
m th}’(& sceding Article ; or we may make use of those forms
immediately, observing that the angles of the triangle A'BC
W8 A 7—B, x-C respectively. Hence, s being }{a+5+49)
\ and 8 being (A + B+ C), we shall obtain
tany, = [[sinssin(s—bsin(s—¢) *")} P (D
sin (s — a} gin{s — a)
1
tan?'1=wsina, ............................. v {8)
cos 3 A .
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_J{-cos8eos(8—A Jeos(S - B)eos{8 -0}
2ccstAsin FBsin €
N
=Sl AsmIBan e T e {9)

tanry

cotrlmgN

J

These results may also be found independently by biseg t'@ﬁ“

two of the angles of the triangle A'BG, so as to deLermn}G’ “wha
pole of the small eircle, and proceeding as in Art, 1198 ™)

121, A circle which touches one side of a tvi'éirh;le and the
other sides produced is ealled an escribed cirdei\thus there are
three eseribed circles belonging to a givenwriangle, We may
denote tho radii of the eseribed circlesy wﬁm}l touch CA and AB

- respectively by », and 7, and values s tan7, and tan 7, may
be found, from what has airea,dy Jeon given with r{,spect 16
tanr,, by appropriate (,hanges' 1y the letters which denote the
gides and angles. ™

In the preceding 4&[‘4:“,18 a triangle A'BC was formed by
producing AB and AC\to meet again at A'; similarly another
triangle may b iqrmcd by producing BC and BA to mocet
again, and anote\ by producing CA and CB to meet again.
These are the eolunar triangles of ABC. The original tumwle
ABG and the three formed from it have boen called associnted
ifmng{leé,,\ABC being the fundamentsal triangle. Thus the
inscribed and eseribed circlos of a given triangle are the same
as'the cireles inseribed in the system of associated trianglos of

\whlch the givon triangle is the fundamental triangle.

122, The cireum-circle. To find the angular radius of the
small circle deseribed about a given driangle.

Let ABC be the given triangle; biscct the sidcs CB, CA at
D and E respectively, and draw from D and E ares at right
angles to CB and CA respectively, and let P be the interscction

L{ ~ 035 - c0s(S — A)+ cos{S — B) + cos(S - C)]-. (10)

Q!
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of thess arcs. Then a small cirele, baving its pole at P, can
be described about ABC.

To prove thizs we draw the arecs PA, PB, PC, and ohserve
that the triangles PEA, PEC, having their angles at E right-
angles, the side PE common, and the sides EA, EC equal, are
equal in all respects ; in like manner the triangles PDB, PDC
are equal ; consequently PA=PC=PB.

And, if F be the mid pointok AB, the triangles PFA, PFB
have their sides equal each™d each; thereforc the angles
PFA, PFB are equal to onglghother and so are right-angles.

Thus the ares drawd $hrongh the mid points of the sides
of the triangle ABCYperpendicular to the sides respectively,
Pass through a_dommon point P; and the arcs PA, PB, PG,
joining P to pheléorners, arc of the same length. This length
we denoto by R

Accardifigly the small circle whose pole is P and radius R
Passog irough the corners of the triangle, and is therefore
called the cireumsorsbed cirele, or circum-circle, of the triangie.
~CFrom the equalities of triangles already establishod it
N\ follows that PBC= PaB, PCA = PEC, PAB = PBA ; hence
& A
FCB+A=1(A+B+C)=S; and PCB=S—A

Now tan CD = tan CP cos PCD (Art. 73),

thuy tan 1 g ~=tan Rcos (S - A),
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tan L4
therefore ten R= TR (8 Ry (1)
The value of tan R may be expressed in various forms; thus
if we substitute for tan 1o from Ari. 56, we obtain

tan B = -¢o8 8 o c_oEgS (12)
AN 8= A \2os (8 - A)cos(S — Bjeos (S ~ C) sl
¢\
: sin A N\
Again cos(S - A} = _S%EJ, cos 3h cos &¢ \ ®

by formula (29) of Art. 56, and the correspon(y;xg formulae
for coskb and cosle; therefore, from (11), “\

N §in %ﬂ- N 13
tan R = m %W’ng}' .................. ( )
Substitute in the last expres'sioi,is}he value of sinA from
Art. 51 ; thus W
tan 2 sin §a sin 1bsin 1o

R= {sinssin (s — e)sinfs-- b)sin (s - ¢}

’. : . - 1- - l - l
A _Zemfasingbsinge (14)*
ki

~ 4

R\
It may e&%yv\‘be’ shewn that
4 sin Ju sin 2b%in Jo= sin (s — a) + sin (s — &) + sin (s —¢) - $in 83
hence weyhave from (14)
P

OF .
f%gﬁﬁ%{mn(s—a)ﬂin(s —B)+ (5 - 6) ~ S s} cerreens (18)

128, To find the angular radii of the small civeles described
round ithe driangles assoviated with o given fundamental triangle
Let R, denote the radins of the circle described round the
triangle formed by producing AB and AC to meet again at A
similarly let R, and R, denote the radii of the circles deserib
round the other two triangles which are similarly formed.

* LExELL, loc. ot Cf. GUDERMANN, Niedere Sphtrik, §131-
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Then we may dednee expressions for tan R, tan R, and tan R,
trom those found in Art. 122 for tanR. The sides of the
triangle A'BC are @, mw— b, m-¢ and its angles are A, 7 - B,
7—C; hence if s=2(a+0+¢} and S=1(A+B+C) we shall
obtain from Art, 122 :

tan 1o

an Ry =B e (18X,
AN
tan R, = \/{ —cos8 ccfs{}{ss(i_lis;():os {$- C)} == (:i— ?,’}'\“’}‘;(\ﬁ)
tan R, = ﬁﬁ? ..................... oreze! \\ ..... (18)
tan Ry = Jisins si2ns(i: _% i)csc;%f ED;-E;?H (s —159:}*’\\ e --(19)
tan R, = %{sin s-sin(s—a) + sin(.gzl.aié-‘s’in(s )} ISP (20)

Similarly we may find oxpxjc's};ioim for tan R, and tan Ry

124, Applications of”‘prer::édjng formulae. Many examples
may be proposed iny olying properties of the circles inseribed
in and described ahdut'the associated triangles. We shall give

ong that will be 0f use hereafter.
To prove thah.’ \
(E'Ot?’*tan Ry = - 2(ssn‘1ae+51m!:+sm -1 ....(21)

Mave

W7 4n2=1 ~ cosa — cos?d - cose 4+ 2cosa coshoosc; ... {22)
\(«herefore
\ - - .
4 (sin ¢ + sin b 4 sin ¢)® — 4n?
=2(1+sindsinc+ sin¢sine +sina sin b - cosa cos h cos ).

Also

067 4 tan R=31—ﬂ{sins+sin(s—w)+sin(s—b)+8in(s— 6)}; (23)
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and by squaring both members of this equation the required
result will be obtained. Yor
gin ¢ + sin (s — @) + sin(s — ) +sin(s — ¢}
= 2[costa sind{b+c} +sinke cosi(h - c)],
and the square of this
= {1 +cosa){1 - cos(h+ )} + (1 —cosa){ 1 +cos(b - P
+Zsine{sinb +sine} o\ N
=9(1+sindsinc+sinesine+sinasing - cosa;;-esjg.i;i:osc).
Similarly we may prove that e \ 2N

# '\ 4

~ (cotr, — tanR)2= %(siu b4sine - gi rrf?):?\— | P (24)
- 195, In the figure to Art. 119, suppnqe’lb\P’ produced through
P t0 & point A’ such that DA’ is a qu?,d}}nt, then A is a pole of
BC, and PA'=1x — r; similarly, suppose EP produeod through
P to a point B' such that ER' jsladquadrant, and FP produced
through P to & point ¢’ susithat FC' is a quadrant. Then
A'B'C is the polar trianglé af ABC, and PA'=PB =PC =7 -1
Thus P is the pole of€Re small circle described round the polar
triangle, and th@{é@ular radins of the circum-ircle of the
polar triangle is\the complement of the angular radins of
the inseribed\circle of the primitive triangle. And in like
manner\the’ point which is the pole of the small circle
inseribedin the polar triangle is also the pole of the small

g}&ﬂe&cr‘ibed round the primitive triangle, and the angular

& it of the two circles are complementary.

al

e

EXAMPLES VIII

In the following examples the notation of the Chapter is retained.
Bhew thaf in any triangle the relations contained in Examples 1 to 12

held good.
1. Tanr, tanr, tan r,=tan r sin?,

2, TanR+-cotr=tan R, + cot#, =tan R, + cot r,=tan R, oot 7y
=4{cob r+ oot 1 + cob ey + cot )
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4 Tan?R + ianR | -+ tan®R, + tan®R; = cot® + cot® + cot¥r; + cot?ry.
Taw r, + tazy, —tan sy, —tanr
aoth iy | Q0T ek iy - cot r

=%(1+cosm+conh+cosc).

5, Cosce?r = ooty - hlealis —e) + cot{s - cleot{s— u) -I- col{s - s} cot{s ~ b},
6. Cosee = cotls—byeob(s— 6) — cob s coti(s ~ 1)~ cot s cot [ —c)

7. Tan R, tan R tan R, = tun R gec®8,

8. Tan R=4{cot#; + oot ry--cot g —cotr).

9, Cotr=4(tan R, - tan Ry+ tan R; — tan B}

10, Tan R tan R, + tan B, tan Ry= cotrcob vy + coli rycotry,
a1 a0

#ine sinB gin?C NY ‘

4 1 N

gindh mine sin?A " #f e ()

13, Shew that in an equilateral Lriangle tan Fix':zzta.n .

11, Tan R tan R, tan R, tan Ry=

12, Cot v cot y vobiry cot =

14, 1f ABC be an equilateral spherienl tlri'.'mfgla, P the pole of the
eircle cireumecribing it, @ auy point on {heSphers, shew that

cos QA - cos BB + cos Q&:S eos PA cos PQ,

15, T tliree small cireles he mucmbed in s spherical triangle having
each of its angles 12(F, so thal¥eaeh touches the other two as well as
two sldes of the Liiangle, f-..’h‘s; that the radius of ench of the small
circlea-- 30°, and that t&}\\genireq of the three small circles coincide
with the angular pointy of the polar triangle.

18, Bolve the r;Rhgncal triengle when the radine of the inscribed
citele und 1.“0 ngles are given.

17, Solve “’hc tpherical triangle when the radius of the circumseribed
circle acm;\ ¥6 sides are given

‘v
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CHAPTER VIL AN
« N/
AREA OF A SPHERICAL TRIANGLE. SPHERICAL
EXCESS. ,\‘Q

128. To find the arex of ¢ Lune.
]

N

PAS. B
Let ACBDA, ADBEA bo two lunes having cqual angles at A;

th‘{?l?\ﬂ;l'e of these lunes may be supposed placed on the other

L8045 to coincide exactly with it ; thus Junes having equal angles

Jare equal. Then, by a process similar to that used in the first
proposition of the Sixth Book of FEuclid, it may be shewn thab
lunes are proportional o their amgles. Hence, since the whole
swface of a sphere may be considered as a lune with an angle
equal to four right angles, we have for a lune with an angle
whose circular measure is A,

_areaof lane A
surfage of sphere 27
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Suppose r the radius of the sphere, then the surface is 4ar?
(Integral Caleulus, Chap, VIL); thus

ares of 1une=§—41r’r2= JArh {1}
ST
127, Girard’s theorem.* To find the aren of a Spherical N
Prigngle, A
RS

Let ABC be a spherical trlangre produce the arcs which
form its sides until they meeb, again two and two, which will
happen when each has become equal to the semi-ciroamference.
The triangle ABC nm.\?\forms a part of three lunes, namely,
ABDCA, BCEAB, @i .CAFBG. Now the triangles CDE and
FAB are subteided” by vertically opposite solid angles at O,
and we shally acsmmc that their areas are equal; therefore the
lune CAFBC LS equal t0 the sum of the two triangles ABC and
CDE. J;Tﬁ ce, if A, B, C denote the circular measures of the
anglegof the triangle, we have
R\ triangle ABC + BGDC = lune ABDCA = 2A7%,

~O° triangle ABC + AHEC =lune BCEAB = 2Br%,
\ ) ~ triangle ABC + triangle CDE =lune CAFBC= 22

*Thia theorem was published by GIRARD in his Invention nouvelle en
digibre, printed at Amsterdam in 1629, His proof, however, is not
rigorous, so the theorem may be attributed to CAVALIERI, who gave a
strict proof in his Directorium gemerale uromiometricum, printed at
Bologua in 1632,
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henee, by addition,
twice triangle ABC +surface of hemisphere = 2{A+ B+Cp?;
therefore triangle ABC={A+B +C —w)%. ..........onfd)

Spherical excess. The expression A+B+C - i8 called™\
the spherical excess of the triangle ; and since
AtBIC-7 o N
447 ! y
wFe deren of o
% of the sphere

A\ ¢
AN

(A+B+C—7r)-?‘2=

the result obtained may be enunciated this
spherical friomgle is the same fourtion of the suli
s the spherical excoss is of eight right anglea NV

%

A
128, We have assnmed, as is usu%li;.-j\] one, thul the areas of
the triangles CDE and FAB in the(préceding Article are equal
The ftriangles, however, are not s@hgrueat, Tt e sg;m-m,cﬁ-ricf'f.li'.'y

“equal (Art. 33), so that ededcannot he wade to coincide

with the other by sul.}eft'ﬁosition. It iz, Lowever, easy
decompose two such~fffangles into pieces which admit of
suporposition, anddthus to prove that their arcas are equal
For describe 19.31'1;}1 circle round each; then, sinco the trtangles
have the same'elements, the angnlar radii of these circles will
he equa! binArt. 122, If the pole of the eireumsertbing circle
falls 'ipafﬁ}é' each triangle, each triangle is the sum of Lhree
isosgelol triangles, and if the pole falls outside each triangle,

gagk’ triangle is the excess of two isosceles triangles aver @
&

Bird ; and in each case the isosceles triangles of one sct 8¢
respectively absolufely egual to the corresponding 1soscoles
triangles of the other set, since in the case of isosceles triangles
the distinction between congruense and symmeirical equolill
does not exist, ’ :

129. T find the area of o spherical polygon.
L‘Gt # be the number of sides of the polygon, = the st ‘?{
all its angles. Tako any point within the polygon and joi* it
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with all the angular points; thus the figure is divided into
n triangles. Hence, by Art. 127,
area of polygon = {sum of the angles of the triangles — nzp?,
and the sum of the angles of the triungles is equal to 2
together with the four right angles which are formed round
the common vertex ; therefore A
area of polygon= {2 (n - 2)x}s? (Q "
This expression i true even when the polygon has sorge,’of
its angles greater than two right angles, provided Lt‘ca.n be
decomposed inlo triangles each of whose angles 1s\leﬁs than
two right angles,

130. Definition, 'The spherical excess of & \Rpﬁerical polygon
is the excoss of the sum of the anglos of ﬁhe ‘polyzon over the
sum of the angles of a plane poly gon ]iang the same number
of sides. \

The result just obtained shewﬁ that the area of a spherical
Dpolygon is proportional to itey apherwal excess. *®

131, We shall now g'w; gome expressions for certain trigono-
metrical functions ofijtf-he spherical excess of a triangle. We
denote the spheﬁfN\excess by E, so that E=A+B+C-7;
and it is most ziria,portant to netice that, with the notation of
Art. 56, N .

:'.\'“" S=3E+ M (4)

A gebmietrical represontation of the spherical excess is given
in tke\text chapter, Art. 149.

mt“i’ 132. Cagnoli’'s theorem.t To shew that

\\‘. sin 3E = J!smssm(s‘—a)51n(¢-b)s1n(s~c)}
2 cos Ja cos 3 cos §¢

*Cf. Ganss, Disg. cireo Superficies Curvas, § 20.
T CaroLr, Trigonemetrin, § 1146, Bee also LExmLL, defa Petrop.,
1782, p. 68,
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Making use of tha expressions for the sines and cosines of
the half sides obtained in Art. 56, we see that

Mn-ﬁzq’cosgs= —cosS=gindE,..........(5)
©0s $6 =

the sign of the square root being determined from the eon-°
sideration that all the factors of the left-hand expressionare,
necessarily positive, while cos$ is essentially negatived since
8 is greater than o, and less than Jor (Art. 32).
Now, N
. 2n n

S G = nasnb Zein 44 cos S sin £4 cﬁsgx;"\" (drt. 51)

and therefore ¥

B AN

in lE = * SO (¢
sin 3E 2 cos fa cos $hleos 47T ©

as was to be proved.

In the same way it is seen that™’
§in G cos Ja cos % .
W;T‘GOS (S - C) = Ell (C — %E),

the last sine heing assumed essentially positive ; whence

in (CYE) = n )
sm,\(g}- ¥ =g Tasinfbeosfe Y (

133, Af Dbetter method of obtaining this formula for
sin(C »4€) is to apply CacNoLTS theorem to the colanal
trjaqgle’ ABC. If we employ accented letters to denote the

’\\elgi;nénts of this triangle, we have the relations
A=r_A B=r-B c’=0,} ......... {8)
N W=w—g, H=r-b, =6
» whenece also
F=m-{(5~¢), —a'=g-b §-V=s5-0 §-C=7—5
B (%
E=32C-E;
the substitution of these valnes in CacNoLrs formuls yields
result (7) of the previous Article.

&”\'
%
\:
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It should be noticed that E’, heing a spherical excess, is
neccssarily positive and less than 27 ; hence C - LE is positiva
and less than =, This justifies the assumption made above,
that sin{C — LE) iz always positive. :

134, L'Hullier's theorem * T shew that
tan 1E = /{tan letan X {s —a)tan 1 (s - D)tan i (s -¢)}.
31n1(A+B+O m} N
COSL(A+B+C—m) A ™
_ sin}(A+B)-sin{{z-0) (
cosL{A+B)+cos H{r —Cy L™
_sini{A+RB)-coslC \%
Tcosi{A+BY+sINEC A
_cosd{e-b)—ocos] G\C“%C (Art, §3).
“eosl{z+2) +cos ;’c sin G’
Hence, by Art. 50, we obtain 4 \
sin H{e +a — b)sin %(Q-!{‘b:: a) { sin s sin(s - ¢) }
€03 2{a + b +c)cos 2(eet b—oyY |sin(s— a)sin(s —b)
= /{tan L5 tan Js =% Yan 3(s - bytan 3(s o)} ..-(10)

Tan &

taniE =

135, Gent's? proof“ c} L Huilier's theorem. The first and
third of DLLAMBR\“@ analogles (Art. 63), may be written in
the form

.V\“’fw cs}(C-E) cosile-b) e (11)
:0\'.‘.’ cos 3 C CO8 3¢
\O” sin}(C—F)_cosile+d) .. (12)
R sinzC €08 £¢

”EFOIH {11) we deduece
“\ X cos 1(C ~ E) ~ cos %G cos L{a — b) — cos Ec
cosf(C E)+cos 4C “oosi{e- by +cos ke
which is the same as
tan LE tan }{2C - E)=tan }(s - @) a)tani(s- b} ...(18)

-_—

*L'Hriner (LEGENDRE, Gdomdirie, Note 10}
1 GruvERT's Archin der Math. und Physik, XX, 1853, p. 358.
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Treating equation (12) in a similar manner, we get
tan1E cot (20— E) =tan 3stan 3(s ~ ). .........(14)
Now multiply corresponding sides of (13} and (14}, take the
square root, and the result is J/HUILIER'S formula

tan LE =«/tan 25 tan 3(s — a)tan 1 {s — b} tand(s—ck ...(18}
Also the division of (13} by (14} gives O\’
tan 1(2C — E) =+/00t 1s tan § (s — a) tan L (s — 0) cot 35 — 4. »(16,

136, If we apply ’Humikr’s theorem to the ]’J‘gkﬁ-}‘eriangle,
whose spherical excess is 2(x —5),* and semip(“a}{métcr 7—+E
we get - 9
cob8=1/cot TE tan 1{2A - E)tan 1(2B —E)¥an 126 -E); (1}
while eorresponding to (16) we have, £ ©
tan}{s—c)=s/tan L Etan1{2A-E) ta,r}t}’{::%B— Ejcott {2C—E}. (18}

These results may also be“c.ﬂz;t.&ir;cd directly from the third
and fourth of DELAMERE'S halogies, by a method analogous

to that used in the precefing Article.
137, The Lhmilieflan. If we pus
L= Jc_o{%s&a.n (= a)tan (s —bytan (s — o)..-.-{19)
equation (18) é‘Art. 135 may be written

%

P2, tan JE=— =, ..., ceverserecene (20}
o) cob 38
an:d\ie:q\latmn (18} of Art, 135 may be written
N ban 120~ B)em " s e cn(20)

\ tan ${s~¢)’

. ‘ L
similarly A E) = Ty o {29

and tan (2B - E)“mﬁb‘)' RPTRT (23)

*.The relation between the area of a figure and the perimeter of the
raciprocal figure is referred to by SomvLz, Sphirik, 11, p. 241
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Now muitiply together equations (20} to (23), and we get
L=\/tan JE tan }{2A— E)tan 4 (2B — Eytan L{2C — E). (24)
Dr. CA4EY sugyests that the function L should be called the
Llglierin of the triangle.  He also points out that, on account
of its double valne (formulue 19 and 24), 16 will give the sohe- N\
tion of & spherical triangle when either the three sides or the A

three angles arve given, the equakions used in either case be:rza
(20, (213, {22), and (23). « \J

138. Prouhet's* proof of Cagnoli’s theorem. Fyuatiohs (11)
and (12} of Art. 135 nmy be writien in the form  { &

\

cos (G cos 2E s 10 sin JE e ,cos (@ - D) 005 1C
A
sin 2C cos JE ~ cos 1Csin 1E—COES 1@ sin 1C.
rosiie
Solving these for sin LE and cos }E, 'wé r»'ct-
sin +E =gin 1€ cos 10 sec ] Lc(;s s - b) — cos Lz + )}
=sin Csin lasin -.f,-b‘sf;t:x_ .......... T (25)
7. N )
~9 aos mﬁ ag in Art. 132,
Aluo
s 1E-= [eos (ﬁz&b)sm?lc +cosdla-b ms‘“C}soc 3
=1 o0 —rt 008 1b + sin Lo sTn 46 cos Clseede.......(26)F
(l i osaj(l +cosl) 48 gin o sin beos ©
’\~' 1cos 4 cos ‘,bco‘; e
O 1+eosareoshareose @i
Q 4 cos Lo cos L cos 3o
AN _osiedetibroostpe -1 (28)
o\ 2oz Lo cos +beos Lo

S

* Nowurelles Annales de Mathdmatiquss, 1st series, XV, 1856, p. 0L

tLacvancE, Journal de ©Eeole Polytechnigue, Cahier 6 TEGENDRE,
Géometiie, Note 10. Fora geometrical procf see Art. 150 below, also
G’UDER}IANN, Niadere Sphiril, § 162

YEULER, detg Petropolitans, 1778,
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From (25) and (26) we get by division
sin 1a sin gb ginC

tan 3 = s Igcos b +8in Jasin Shoos C 7777 e (29)
and from (25} and (27)
2n
1E= P 30)*
N 2B = cos at cos b+ cos ¢ { }s\,
€ N\

139, Other formulae. We may obtain other form‘tﬂao
jnyolving trigonometrical functions of the sphbrlwl @XCess.
For example :

To find sin LE and cos JE. .“’}\\'

In (28} put 1 — 2sin?dE for cos E ; thus '

1+ 2 cos 2acos 3hcos Lo — co\s%b — cos?lh - cos%c

sin®1E =
i 4 cos Lo caBG b‘cos i

By ordinary development we’ean*shew that the pumerator
of the above fraction i equal to8"
4 sin Jssin %(s v:ﬁ'js{n l(s-bysin3(s—¢);
therefore
sintlE— sin §§sm§(s —a)sin (s - B)sin § (s~ c) ..(31)

. (" cosiacoslbcosic
Bimilarly \\

\ 1. Lie 1 1fe
cosz{Dre L08 B 008 Hs-ayeos (s —Heos3(-9) (a9
A\ €08 14 cos 16 cos 3¢

From't@aﬁ.e by division we got L'HUILIER'S theorem,

\140 To find cos(C - LE).

S“b%ltllte in (28) the elements of the colunar triangle a8
"\ glven in (8) and (9). We get

a\
NV cos(C - 4y Hn3e # sin?ib ¢ coslho - 1
2 8in 4e sin 1b cos 4¢

cosﬂlc cos'“a-—cosmb—z— H (39)
" gin 3o sin b cos ¢

* Dg Gua (Mémoires de ! Acaddmie des Sciences, Paris, 1783)
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From this, or by substituting the elements of the colunar
triangle in {31} and (32), we also get
0 s5in 345 - ) sin ks - Boos 33 )

LTl - P Sl T\
sin*(3C - {E) sin 1a sin 1b cos 1o » wee(3)

s1ip 1 sin 2ecos (s —a)cos L{s— b)sin(s —¢) 35
cos¥(JC~1E) = S Tasnlioosde e {36),
] El k3 2 AN

Again from (6) and (7) we get, by division, the formula(™,
cot 1a cob 2h N
—-W, ...”.'.,.'.,‘....:(36)

which is another form of (29). ’\

oot 2E=c0t C +

141, CGaleulation of the spherical excess;QW ken the numeri-
eal values of three of the elements of_aSpHerical triangle are
given, the spherical excess, and thergfére’z also the area, may be
ealoulated directly from the data in\three cases, viz.

(1) When the three angles aﬁé’ given.

(2) When the three sidesaTe given; use is then made of
L'HumLikr’s formula, .

(3) When two sidegland the included angle are given. We
then use formul @9.3, and may adapt it to logarithms by
introducing the ,salh)sidiary angle ¢ such that

W7 tané=tandacosCi i (37
the formmia-then becomes

O in 1B tan C sin ¢
- 1p SR ENE v 38
Q o = e (p 1D o

s ) )
"\ EXAMPLES IX,

\ 1, Find the angles and sides of an equilateral triangle whose area I8

one-fourth of that of the sphere on which it is described.

2. Find the surface of an equilateral and equiangnlar spherieal poly-
gon of . sides, and determine the value of each of the angles when the
surface equals half the surface of the sphere.

N\
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12, The side AB of a spherical triangle ABC iz bisected at D, If E,;
and E; be the spherical excesses of the {riangles ACD and BCD re.
spectively, shew that

gin $Ecos b =sin 1E.cos ia.
{Sci, and Art, 1807.)

18. If a, b, ¢, d are the sides, 2p the perimeter, and 28 the area of A
spherical quadrilateral inscribed in a small cirele on a sphere of ﬁm
radius, shew that { "

$in?4S = gin 4 (p— ehein 3{p — b)sin §(p - c}sin 4{p - a})~{\ v
cos}acosébcoa%ccos&d
(Sei. a.l.(f‘t%% 1398.}
.\Q\V
N




CHAPTER VIIL
VARIOUS PROPERTIES OF THE SPHERICAL TRIAH(}iE.
' 4 ‘.ﬂ

142, Definition of altitude. The arc AD, dra rl::from &
corner A to intersect the opposite side orthogr}n@\t{y in D, is
talled »n alfifuds of the triangle,

Propertieg® Bf’ the altitndes.

The profiilet of the sine of a side and the sine of the corresponding
oltitude s the sume value, whichever side be taken. This value
may\% called 2n.

~The product of the sine of an angle and the sing of the cor-

N\ *ﬂs}?m*dmg altitude has the same value, whichever angle be laken.
\/ This value may be called 2N.

To prove these propositions, we notice that in the right-

angled triangles ADB, ADC

$incsin Ba=sin AD =sin fsinG. ..... R, {1)
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8. I a=h=1r, and c=1w, shew that E=cos1L

4, if the angle C of a spherical triangle be a right angle. shew that
sin{E =sin fasin fhsce e, cos 4B == cos Ja vos 4 sec Lo,

5. If the angle © be a right angle, shew that

sinZe . _sin’n | sin% O
cog ¢ Teosa  cosh A o
2\
.
w sine . .
6. If a=» and C=g3, shew that tan E—; . S
. Z Zeosa g W

7. The sum of the angles in a right-angled triangle j€lesy than four
right angles. & ?i

8. Draw throngh a given poing in the side of aSgpliorical triangle an
are of & great eircle cutting off a given part of the Lrinnzle.

9, In a spherical triangle if cos C= ~ tan’ (}t-é,n L4, then C=-A4 B.
ap. E) ’\_

10 If the angles of a spherical tfiahgle be together equal to four
right angles « \J
cot*ia + col¥h % cos?e =1,

I If +, », »; be the 1‘aﬂﬁ‘ of three small eircles of & sphere of
radius r which tovch one gldther at P, Q, R, and A, B, C Le the angles
of the spherieal riangle formed by joiuin g their ceutres,

area PAR> (A cosry + Beos 7p+ Coos vy - mjr%
)

g

12, Bhew HEQ;\W
il 5B s (A~ $E)ein(B — 1E) sin (C—3E}}F

25in JA 5in 45 sin 4C

W/ :
13: ;I:I'13.1d the arer of a regulur polygon of a given number of sides
fo;‘me}ﬂ'by ares of geeat civeles on the surface of a gphere ; and hence

\&’?‘a}lce that, if o be the angnlar rading of a small eircle, its area is te
N\

&«
S

at of the whole surface of the sphere as {1 —cosa} iz to 2

14, A, I?:, C are the angnlar points of & spherical triancle s A, B ¢
are the middle points of the respectively opposite sides. If E be the
apherieal vxcess of the triungle, shew that

cos‘.}E:cﬁAE:@g B’C’zﬂf?\’_‘
COS e COs o GO &b

15, If one of the arcs of great cireles which join the middle points of

the sides of a spherieal triangle be a quadrant, shew that the other t90
are also quadrants, O :
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EXAMPLES X,

1, If o be the spherical cxcess of the polar triangle, and E', EY, E¥
those of the colunar triangles,

tan o =~'tan iE tan 3E"tan 3E" cot E.

{P'rorCIET.)
2, Inan equilateral triangle
tan 2E =tan on/tan 5o tan 1 . A
8 Ifaand b are the equal sides of an isogeeles triangle ) ( ™
tan 1E =tan iwﬁﬁmma. Y \/
4. Shew that S N

tan}E cot (A - 4E}=tan }s tan & (s — ). '\\

5. Bolve the spherical triangle when the sum of two gideg,/the third
side, and the spherical excess are given, \

6. The areq of an isosceles right-angled spherical tﬁhﬁéle is 47 of the
surface of the sphore : caleulate the bypotenuge/\\ (R, U. 1., 1808.)

7. Find the angle of an equilateral Sphel‘iCé.L,tITiﬂHng covering #y of
the surface of the sphere, R

Shew also that two of its mediang aa'(}"ohe of its sides are togcther
equai to half tho cirenmference of a,,g:ﬁéa;t circle. (R. T, I, 1895.)

8. & spherical triangle is stchuthat the centre of its cireun-cirele is
on the base, and the vertical ngle is §r. 1f the radius of the sphere
be one faot, find the ares of{bhe "trizngle in square feet,

2 ofth (R. U.L, 1895.)

9. A regular sphericil quadrilateral- has each of its angles equal to

160°; ealoulate the(ritio of its area to that of the sphere.

10, The a.re;wif.af regular spherical polygon of # sides is one p* part
of the sphepes $nd ita sides and angles. (B. . 1., 15893.)

1. J'f'l‘gii - lune is divided into two isoseelos triangles, and the area
of ona.of them is n timos the aren of the other ; shew that
N® n—14%A
&:} 4 tan JAcos f=tan (ﬂ.T)?’
here A denctes the angle of the lune, and & one of the equal sides.
Find the nltimate value of cos# when A becormes indefinitely small;
a0d hence shew that the surface of a segment of a sphere js to the
surface of the sphere as the height of the segment is to the diameter of
the sphere, (8ci, and Art, 1894.)
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12, The side AB of a spherical triangle ABC is bisected at D. T E;
and E, be the spherical exceases of the triangles ACD and BCD re-
spectively, shew that

sin }E;cos 3 =sin $E, 008 a.
{8ci. and Art, 1897.)

13. If @, B, ¢, d are the sides, 2p the perimeter, and 28 the area oi\a\
spherical quadrilateral inscribed in a small circle on a sphere ,c(”'
radius, shew that

Fin% 8=

0\\ s
sin 4 (5 —a)sin 3{p - Fsin §(p —clsin &(p «éw’
cos 3o cos 4b cos §e cos 34 '\ 3
{sci,e:;\i)ﬂ Art, 1898}

T\
W»



CHAPTER VIIL
VARIOUS PROPERTIES OF THE S8PHERICAL TRT,ARGLE

149, Definition of altitude. The arc AD, dr@n fmm a
corner A to interscet the opposite side or‘ohogénally in D, is
ealled »n a/fifude of the triangle.

Propertms\bf the altitades.
The }?{QE’W# of the sine of a side and the sine of the corvesponding
mﬁ»has the sume value, whichever side be faken. This value
ma¥, be called 24
N\ ST product of the sine of an angle and the sine of the cor-
\\ ’P‘espondmg altitude has the same value, whichever angle be taken.
” This value may bo called 2N.
To prove these propositions, we notice that in the right-
angled triangles ADB, ADC
sincsin B=gin AD =sinbainC. ........ceiveeins (1)
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Hence
gin ¢ sin AD =sincsin ¢sin B=sing sin b sin &
=sindsincsinA=2gn ... (2}
ginAsin AD=sinbsinCsinA=sinesin Asin B
=gin & 8in Bsin § = 2N, cern(5) Q
A

From these we derive the following Ko N

. . . N B - ; :"\ v

sin & sin b sin ¢_sing_ sin b _sme_m Sy

2n sinA sinB sinG N’ ,uf:‘
S
sinAsinBsinG _sinA_sinB_sinC N )
2N Csinag sind singlw T
In? 2NN

............. {6)

THuesinbsne " snA siBsin G
If we eliminate A from the equatitns
2n,§éi‘rfb sin ¢ sin A,
cos @ - ¢og b cqgic = 5in b §in ¢ 008 A,
namely by squaring and addihg, we get
4n®=sin2} sinde tEos & - cos b eos ¢)?
~1 - ¢ps2n ~ cos?h — cos?c + 2 cos @ cos beos e, ....(T)
= 4%{?}5’§in(s —a)sin(s ~ Bsin{s — ). ...... pereennns (8)
Bimilarly A\
4“57‘* #in® B sin?G — (cos A + cos B cos C)2

Oy =1~ cos™A - cos?B — ¢0s2C — 2 cos A cos B cos C {9
’ 7 =—deos $¢0s(8 - A)cos(S - B)cos (§ - C). ...-(10)
AN Thus it is seen that the n and N of the present Article are
"\ s the same as those defined in Arts. 51 and 58,
) 143. Length of any line drawn from a cormer to the
opposite side. :

Let F be any point in the side BC, and let AF be joined:
—_—

*CL. GUbERMANE, Niedere Sphirik, § 142,
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Let the lengths of the arcs AF, BF, FC be denoted by f, a,, ,
respectively, and the angles BAF, FAC by A, A, respectively.

Applying the ecosine formula te the triangles BFA, CFA,
we gob

008 ¢ — COS &) COF A
— f— cosAFB
ST ¢t sinf
A
CO8 &, 08 f — cos b o
= —cos AFG = ?—'f:.os, {
. SiTl ég 810 f Y
which gives '\’“’g'
. . 7 b 3
sin & sin . 25
008 F = 008 b= 4 608 620 vrrreren s (\-v.(ll)
sing sing RVa\

Divide both é,rdés bv sin f, and then multiply numerator and
denomma,to,l'\qf “the right-hand side by sin F; thus

\c ot f = cos bsin e, sin F +cos¢sinay sinF

~\ sin e sin fsin F
B“t v sin ¢, sin F=sincsin Ay,
:> sin a, sin F = sin 4 sin Ay,

sin @ sin fgin F=gin & sin csin A,

and 50, on substitution of these values, we geb

WAL sl (12)

cot f = cot b
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144, To illustrate the use of these formmlac, we shall apply
them o some special cases.

Length of the median and of the bisectors of an angle.

{1) Let M be the mid point of the arc BC, and ot m denote
the length of AM, which may be called a mediun of the trianglé\

Making F coincide with M, we get

) 5 \:\’
th =gt a; =44, N\
and 5o equation (11} gives us A\
1 : O ° %
cosm_m%é(c()s b+ cos r.,lzﬁ\.,..........,(IS)

{2) Let AF be the internal bisector Of ulie angle A, and let
its length be denoted by =. ThepyAf= A== 4A, and from
equation (12} we get R4S

cob = ﬁf;;(bbt Bt COb€hraririnrerin (14)

(3) Let AF be the extgnh’;ﬂ"bisector of the angle A, F being .
in BC produced, and 1e,§~'ffs length be denoted by 3. Then
A=mdr4iA Ay=—fhr—1A), and formula {12) ylelds

QN 1
O T a
145. Relation between the areg joining three points on 3
great,cfrele and any other point.
x'l‘éa.‘resulb (11} of Art. 143 may be regarded as a relation
gomnecting the angular distances of three points B, F, and G,

feobd - cobohaiinin {15)

N\ 1 the samo great circle, and any other point A on the sphere.

It‘; may, indeod, be used as a test to determine whether threo
g1ven points do or do not lie on the same great circle.

Looked at from this poiut of view tho formula is equivalent
fo tho following theorem, in the enunciation of which ¥
introduce a fresh notation, in order to present the result 10
a symmetrical form,
_—

* GUDEBMANN, Niedere Sphirik, § 400.
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If X, Y, Z be three points on a great cirele, and P any ofher poinf,
c0s PX sin YZ 4 005 PY sin ZX + cos PZ sin XY =0, ...{11a)

it being understood that arcs measured on the great circlo
in one direction arc considered positive, those in the other
direction negative, so that ZV¥ = - ¥z,

Instead of the cosines of PX, PY, PZ we may use the sines O\
of the ares drawn through X, Y, Z perpendicular to the greafs
circle of which P is & pole, and thus we get a relation \coli-
necting the spherical perpendiculars drawn from three'points
on the same great cirele to any other great circlc,“'\“fe ghall
restate the resulting theorem in a form whidhNexhibits its
analogy to a well-known thecrem in plangs gedmetry ; and
append a proof which does not depend ono\Aﬁ: 143.

™\

148. Relation between the arcs ;h‘alwh perpendicular to a
great circle from three points on ahether great circle.

From two points P; and Pg.:a:i'cé arc drawn perpendicular
to a fixed are: and from a,pg}inb P on the same great circle
as Py and P, a perpendigilur is drawn to the same fixed are,
Let PP~8, and PP, :“Qz\, and let the perpendiculars drawn
from P, p,, and P, i\(:\denoted by «, #;, and x,, Then will

X “~:'siu€ o sin &,
S (0, 0, "1 S, + 6)
Let the’dvc’ P,P,, produced if necessary, cut the fixed are
at a Q‘!{wo 5 let @ denote the angle hetween the ares. We
Sh‘}llfs ppose that P, is between O and P, and that P is
.bfﬁﬁ'een P, and P,
“\\Then, by Art, 73,
\

811t T

) 2

8in &, = sin a sin OP, = sin a sin{OP — )

= sin «{sin OP cos §, — cos OPsin 6} ;
Sin ;= sin a sin OP, = sin e sin{CP + ;)

=sin af{in OP cos &, + cos OPgin 4,),



O
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Muitiply the former by sin 6, and the latter by sin @), and
add ;. thus

sin 0, sin, + sin #, sin , =sin (0, + 6,)sin o 5in OP

=gin{f + B, sinw ... {11b%,

The student should convinee himself by examination that
the result holds for all velative positions of P, P, and Pyaithen
due regard is paid to algebraieal signs. O

Fxamples of the application of this resultgwill’ be found
in tho ehapter on Hari’s Cirele. 7,

The theorem of Plano Geometry analogousNo ;.\rha’r. of the present
article is as follows, \

If P, P, B, be three points in ihe su.;;w\\simight ling, and @, #, %
the lengths of the perpendiculars d]raxafr.l’\fi‘bqll them to any otlier straight
line, then )

PP, (\NB,P

F
= 5t et 1 Hoy -
Pl&é : P1P2 ¥

4T, The arc joining ghgimid points of ihe sides of o trianglt
tnlersects the Base proﬂﬂjéed in points which are equidistont From
the mid point of thd Duge.

Let L, m, i}{h} the mid points of the sides, and let the are
LM intersebtx\tﬁé base in the points X, ¥, which are of course
diumatﬁig&],ly opposite,

LG}J@P; BQ, and CR be ares drawn perpendicnlar to the are
Wifedm A B, and . Thesc will meet in a point O, the pole

7oi'the circle L.

" In the triangles APM, GRM we have
Fa% A
AMP=CMR, vertically opposite angles,

A A
APM =CRM, both being right angles,
AM = MG, by hypothesis.

Hen'ee_the triangles are equal in all rospects.
Similarly tho trisngles BQL, CRL. are equal ; therefore

AP=CR=BQ.
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In the triangles APX, BQY, we now have
A A A A
AP=BQ, X=Y, APX—=BQY;

therefore the triungles are symmetrically equal,
Accordingly AX=BY; and as AN = BN, we get finally

A
XN =YN=1XNY =a guadrant. A

: &
Cl'afollary.:. \fPthe base of 2 triangle be given, and the vertex
variable, #he arc joining the mid points of the sides passes
cnnst‘a\ through two fixed points.

“\1-43 The pole of the great circle joining the mid points of two
<W€f 5 also the pole of the cirowmcivele of the colunay trigngle.*
" Using the figure of the previous Article, and denoting by p
the length of the equal arcs AP, BQ, CR, We notice that
OC=0R+RC=%}7r+p, OB=0OA=OP-AP=17-p;

—_—
* Barrzer, Trigonometrie, § b,
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hence OA=0B=m—0C =00,
where C' is the point diametrically opposite to C,

Thus O is equidistant from the corners of the colunar
triangle, and is therefore the pole of its circumeircle.

It is now easy to find the value of the radius Ry of thisy
circle. For R,=}w—p; and in the triangle CML

N ¢
sin psin ML = sin CM sin CLsin C. .........{{ w(16}
A A £ N
Alzo ML=1PQ=1A0B=AON; A
therefore  sin AON cos R, =sinlasin & sin C. /o0 :
And in the right-angled triangle ANO A\
Y v’
gsin AON sin R, = sin 16}
henece ;\ﬂ\:’
sin § . .
BN Ry = ot By ;‘;\03 1o cos Lbsin te ...(17)

3750 Lasin 15 sin O
Substituting in this formala ‘the elements of the colunar

triangle, we deduce the j.';?silize of the eiream-radius of the
original triangle, namelyy =

A 2, . .
M{an R= 5 5in tasintbainle ..o {18)

e
These resultsagree with those obtained in Chapter VI
149, Goometrical representation of the spherical excess

Biill :@R]ﬁng use of the same figure, and remembering the
pa@}of triangles proved equal in Art. 147, we sce that

A\ A A A a A
£ \\ XAP=YBQ, MAP=MCR,  LBQ=LOR;....(19)
3 " hence .
{ A A, A
2 XAP = XAC — MAP + YBC - LBG,
=t-A+T-B-C,
= ~ E, where E is the spherical excess. ...

i A -
Thus XAP or YBQ is the complement of half the sphericsl
excess.

. (20).
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Now in the right-anglod triangle APX,

A
cos XAP = tan AP cot AX;

therefore - 8in JE = tan 22006 Ry vovvvviiiecinenannans (21)
Substitute for cot R, from formula (17), and there resnlts
1p L 7 99 \
sn zE Zeosiacos theosdls T ( }.\‘ y
which is CAexoLr's formula. O
From this and (18) we also get A\
- 2 Lol s
SlnfECDtRﬁmﬁ}— .':.l.'.:...( )

160. Again in the trisngles OAN and CML\ \

. R N
cos AN sin QAN = cos AON =“GQS~ L
and 08 ML = cos CL cos CM + sin BL\sin CM cos C;;

A L ™
hence  ¢os LE =sin OAN N
b T 1 . 1
_cosjucos pdhingasingbesC ay
eos L

as in Art. 138, (26). -

151, If one angle it@}}ﬂangle be given, and the product of the
langents of the ha,l'ué\gf the sides contatning the angle be constant,
the aren of the iﬁghﬁgle is constant,

If one sideefld triangle be given, and the product of the tangents
of the kaive@%f'}fhe adjacent angles be constant, the perimeler of the
trinngle 45 eonstant.

Tievfirst of these theorems is an immediate inference from
“thfef’expl‘OSSion for eot LE contained in formula (36), Art.-140.

»\: Lhe second is obtained by applying the first to the polar

\/ friangle,

152, I the base of a triangle be given, and the difference be?fween
the vertical angle and the sum of the base angles, then the circum-

cirele §s known,
Lawy, B



118 SPHERICAL TRIGONOMETRY. 1815

Let O be the pole of the sircumecircle. Join OA, OB, og,
Since the angles at the base of an isosceles triangle are oqual,

A A A A A A
OCA = OAC, OCB = 0BC, OAB = OBA.
A A A A
Therefore A+B-CG=0AB+0BA=20AB=20EA. ........, (26,

8o when A + B - C is given, the angles OAB and OBA are gwen,
and accordingly O is a known point and the cirenmy qn‘cle Iy
completely known. | « W

e
The result may be stated thus. When A and B are fixed,
and A+ BAC constant, the locus of C is a small circle through
A a.nd B“ "'

\1% Lexell's locus.* The buse and the area of o sphericah
oank being given, the loous of the vertex is a small cirele.

\ Let AB be the given base, and let A, B be the points

(" diametrically opposite to A and 8. Then the triangle ABC

O has its angles A’ and &' equal to = — A and = - B IeBPth“"i'lFr
Thus
A+B -C=2%r-A-B-C
=1 — E =¢const,
-

* LexuLy, Acte Petropolituna, 1781, I, p. 112
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Therefore, Ly the previous proposition, the locus of C is a
small cirele through A" and B/ *

164, Xeogh's thpg\n'f‘ The sine of half the spherieal excess
is equal to tuice fﬁ'&'&\bm me of the sides of Ihe frinngle whose corners
e the wdd ;umﬁfs of the originul frivngle,

RCfﬂ"”l"\t}) the figure of Art. 147, we have in the tri-
angle A)QEw

\" A .
cos XAP = sim X cos XP,

S
.fh‘z.t i, sin JE - sin X sin ML, . (26)
”\ f’ut X 18 equal to the are joining the mid pomts of the two

o

A *By the use of LEXrrUs locus ib is possible to deseribe a spherical
polygon of 2~ 1 sides having the same area {or the same perimeter) as
L given spherieal polygon of n sides. Bee SeRINER, Cvelle’'s Journal,
I, p. 45, and GUoERMANE, Niedere Sphirek, § 104
t Nouvciles Annaies de Malhématigues, 1st geries, XVI, 1857, v. 142,
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great semicircles XMY, XNY; that is, the are drawn from N
perpendicular fo LM. And the product of the sine of this
perpendicular and the sine of ML is twice n', the norm of the
sides of the triangle LMN.

Hence SinAE=20" oo {270 ,.

166, 7o find the triangle of moxtmum area, two of whose sides,
are given.* S N
Let ¢, b be the given sides. Then, by Art. 138, fermula
(29), S
cobecot b+ cosC L0
cot%E=573in%C— pde (28)
The greater the area the greater is E, and ;he' less cot JE; we
bave therefore to find what value of 78,1 any, makes the
expression on the right side of «thigh equation & minimum.
This is done by a geometrical congtyliction, as follows.

) ‘ _ In any plane, with centre O and radius unity, describe &
¢\ circle. In the same plane take a point @ whose reetilinear

distance QO from O is eqnal to the known quantity cot & cob i
Produce QO to R, and make the angle ROP equal to the angle €
of the spherical triangle, P being on the circumference of the
unit circle. Draw PN perpendicular to QR.

* LegenDRE, Géometrie, VII, Prop. 26.
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Then
NP=sinC, QN=QO+ON =cot s cot b+ cosC,

and therefore, by equation (28) above,
A
OQP=}E. cvovrrreen. crrarenr i (29)
If @ iie outside the circle as in the diagram, that is, if N
A4
eoti 1 cot £5>> 1, or @ +b<m, the greatest possible value of 0QR )
occurs when QP is o tangent to the circle. If its position G

that case be QT, we sec that N
A A
ROT = %w +0QT, M'\ S
?:»8., C*%T+%'E, \%
or A+B=Cn rovererrernnn., N N (30)

The triangle of greatest area is aceordifgly that in which
the angle contained by the given sideghigvequal to the sum of
the remaining angles, o\

[Fatb=n, cotfacot 1b=1, and"@ lies on the circumfarence
of the unit circle. And as thedangle ROP at the centre is
doublo the angle RQP at the ircumference,

_E€=E,
or BFE e .(31)
O
The greatest value c}\E is the same as the greatest value of G,
hamely = ; and.fhe limiting form of the triangle as its area
increases is afafté whose angle ig a right angle.

If ¢ + 347y Cot Yacot 36<1, and Q lies inside the unit circle.
The angleJoqPp may now have any value from zero to =, and
therafore” may have any value up to 2w. There is no real
magitum ; the triangle may be increased in area until it

”\!’e%mes a hemisphere,

N/ Thus if.g 45 = o, there is no true maximum, but there is in
¢aeh case & superior limit to the area. The area never quite
attains the limiting value, as such attainment would involve
E]:e triangle’s ceasing to he a triangle in the strict sense of the

.
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156, If in a spherical frinagle the angls C be equal o the sume of
the other fwo angles, the pole of the circumeircle will lic in fhe side AB.

Draw the arc CN making the angle ACN cqual to A, and lef
CN meet AB in N.

A A L

Then because C=A-+ B, and NCA = A, the remainder NCB= B
’ 4 N ’

G (N

N\
% N/
A \'":‘
A w\v

N N3
. NN .
Hence the triangles ANC, BNG arc sogdeles, 5o thab
NA = NC =8}
therefora N is the mid point_ f{[: 'AB, and is the pole of the
eivcum-cirele. N

157. Theorems concat:‘h;intg polygons, From the last two
articles the following ‘Pheoretns mauy be deduced.

When all the ?‘{dﬂ}}ﬂ-t one of @ sphevieal polygou are given in
longth, its area i guattest when the corners e on o small civcle whose
pole 15 the mgdhpotnt of the remadning side.

When, dit #hie sides of o sphevical polygon are given tn lenglh, its
areq xzi'\z}reafest when i con be inseribed in a smell civcle.

dnhoth these theoroms it is necessary $hat the sides should

) %o small as always to justify the application of the frst

‘:1:; art of the theorem of Art. 155,
,”\:\, " The results are proved in the same manner as the analogous
\/ propositions for plane polygons. See LEGENDRES Géomélrie
VI, Prop. 27, or TowNSkND's Madern Geometry, Vol I, p. 63

168, The arcs which bisect internally the angles of o sphericl
trigngle are concurrent ¥

* First proved by MexELAUS.

N\



§160] PROPERTIES OF THE TRIANGLE. 123

The point of concurrence is the pole of the inseribed circle.
The proof is contained in Art, 119,

A corresponding result holds in the case of the internal
bisector of one angle and the external bisectors of the other
two.

The arcs drowm perpendioular to the sides of @ Iriangle af their
mid poinks are concurrent, e \

The point of concurrence is the pole of the clrcumc{rble
The proof iz contained in Art. 123, N

169, If three arcs pass through one point, the ra-tfq of the sines
of the arcs drawn from a varizble point on omspetpendicular io
the other fivo, 15 constand,

Let tho three ares be OA, OB, OC. T}(e any point P in
0B, and draw PM and PN perpcnd,lcular to OA and OC re-
spectively. s

Then in the mght—a,ngled tn&ngles PMO, PNO,

gin PM = sln OP ain AOB gin PN =sin QP sin COB

5in PM sin AO§
"‘\sm PN sinCOB

Thus the I‘Z!.f:]()\l\)f sin PM to sin PN is independent of the
position of P,ou the arc OB.

Converselyy/suppose that from any other point p arcs pm
and pn@ng“drawn perpendicular to OA and OC respectively ;

then )~ .
1\ sinpm_ sin PM

“.,:o sinpn smPN’

“\\/it will follow that p is on the same great circle as O and P.

) 2

therefore

160, If three arcs be drawn from the angles of o spherical
triangle through any point to meet the opposite sides, the producls of
the sines of the ollernate segmends of the sides are egual.

Let P be any point, and let arcs be drawn from the angles
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A, B, C passing through P and meeting the opposite sides at
D, E, F. Then

sin BD sin BPD gin DC  &in CPD

sin BP sin BDP sin CP &1 CDP

dhorohs sin BD _ sin BPD sin BP O
erefore gin DG &in CPD sin CF A
)
A o\
"4

™

. . S sin OE sin AF
Similar exprossions-niay be found for STER and SnFB’
A ‘AN A A A A
also BPD&APE, DFC=APF, CPE= BFF,

and henee it #5llows obviously that

SO enBD SinOE smAF g )
A sin DG sin EA sin FB
therefore sin BD sin OE sin AF =sin DCsin EASInFB. ... (8%}

{"TXis theorem {s analogous to CevA’s theorern * for a plane
..\\triangle.

% Conversely, when the points D, E, F in the sides of 3

spherical triangle are such that the relation given in formlilla
(33) holds, the arcs which join these points with the opposife
eorners respectively pass through a common poinf. Hence the
following propositions may be established :

*Hee Nmxow’s Euclid Revised, Ceneral Addends, Seetion I, &
Bussei’s Pure Geometry, Chapter 1.
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The perpendicnlars from the corners of a spherical triangle
on the opposite sides meet at a point ; ¥

The arcs which hisect the angles of a spherieal triangle meet
a$ a point ;

The arcs which join the corners of a spherieal triangle with
the middle points of the opposite sides meet at a point;

The ares which join the corners of a spherical triangle with{ )\
the points where the inscribed circle touches the opposme sided -
respectively meet at a point. AN

161. Spherical mean centre. In connectiong’with the
theorom of the preceding Article it is of intersh to mnotice
that, if 2z,, 25, 2m, be the sinest of the triamples BPC, GPA,
APB respectively, ¢ \\

sinBD:ginDC= =Nyl n\ ................... (34)

For, if 8 and y bhe the perpendmulai's drawn from B and G
to AD, \
2n, =sin 3 sin AP, '?'.?.12: sinysin AP ..o (353
bt sin 8 =sin BDsin D, sand sin y =sin DGsin D,

Henee sin BD : sinDG =sin B : sin Y=g iR,

On account of ghéﬁnalogy which exists between this
property and a préperty of the mean centre of three points
on a plane, Dr{G4sEY calls P the spherical mean cendre of the
points A, B, Cdor multiples #,, #, n, respectively.

It is readily scen that n,, n,, , are analogous to the areas
BPC,.GPAAPB in Plane Geometry, or to the areal conrdinates
of R’hfl fact n,/m, nofn, ngfn ave volumetric coordinates of P with
Tespect to the totrahedron whose corners are A, B, C, and the

{_Bentre of the sphere.  See second foot-note on page 29.

o/

162, Normal coordinates of a point with respect to a
triangle, If », y, »# denote the lengths of the arcs drawn
-

*Gnnmm\m\r\r, Niedere Spka,mk § 68 ; SceoLe, Sphirik, 11, § 47.

t Bee Avt. 51,
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from & point P perpendicular to the sides of the friangle
ABC, then sin, siny, sinz are called the aorinal eoordinales
of P with vespect fo the friang gle. When the vatios of the
goordinates are given, the poins is determined,
Normal coordinates are clearly analogous to  frilinear s
coordinates with respect to a plane triangle. \
Suppose, for example, that P is any point ou the are, ﬁD
drawn perpendicular to BC. See fignre of Art. 160. ()
Then in the right-angled triangles ADB, ADG ‘.m hzn e, by
Arh. 73,
cos B =cos AD sin DQB, 008 C = c03 F\D“?-}; DAC ;
therefore
cosCcosA_cosC_sin DA.Q\. sin SN0 A, 159)
cosAcosB cosB sm*QAB sin #

If P also lie on the arc BE drawn perpendicular to CA, we

have likewise ®
cosAc@QB §iti 2
—_— = ———
cosByeos & 8sInz
henee it fellows that,.
{’cos BeosC sinz

() csCoosA sing

and this shemi\hat P i3 on the arc drawn from C pcrpendicula-r
t AB._ ()

Thu§ ale three perpendicalars meet at a poinf, and this
le-l{til - determined by tho relations

o\ ging  siny _ sing (36)
N cosBeosC cosCeoosA cosAcosB
PN
~\J In the same manner it may be shewn that the ares drawn
4
N\ from the angles of a spherical triangle to the widdle points of

the opposite sides meet at a point ; and if from this point arcs
%, %, z are drawn perpendicular to the sides e, b, ¢ respectively

sing _ siny 8111 ¥ (37)
sinBsinG sinCsinA sinAsinB
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163, It should b woticed thai the normal coordinates of any polnt
are comnceted wirh the sines of the triaugles PBC, PCA, PAB Ly the

relations
sinasina=2n, sinysinb=2n, sinzsine=2n, ......[38)
The three enordinutes of & point are not independent of one another;
they must ulways be snch as to satisfy the relation O\
24wt 4 0 R Ceagens a 4+ 2ng,008 b Sugir 08 £ 0l MG

An easy proof of Lhis is obtained by wriling down the ‘.olumetrrﬁ"\
efuation of the splere (ef. Art. 161} \,,,

164, Property of a spherical transversal, JIf o J:‘eat‘mrde
wmiersest the sides of o irigngle ABC in L, M, and N, \
sin BL sin GM “~11’l AN v
§in LG sin MA sinNB p RN
Eithor viie ov all fhree of tho sides of tf\e'%rianrrle will be cut
externally by the arc LMN. The fighwe represents the case
when only BO Is cut externally, A\ ~/
Draw the arcs AX, BY, CZ por@end.lcular to LMN.

%n'bhe right-angled trmn'*lcs BYL, CZi.,

,“f; 8in BY =sin BL sin YLB sin CZ =sin CL sin YLB
.“\ -
“N“henee sin BL_ sin BY .. (40)
vV sinCL sinGZ "7
Similarly from the pairs of triangles CMZ, AMX, and ANX,
BNY

H
-:m CM  sinCZ gin AN iS]-.“__A_X @)
Sln MA A 51 ﬂﬁ’ Si_ﬂNB SSnBY T
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Multiplying eorresponding gides of these three equations,
and writing — sin LG for sin ClL, we get

sm BL sm CM_ sin AN
sin LC sin MA sin NB

1 (42)

This theorem is analogous to MENELAUS Theorom* for & ™
plane triangle cut by a transversal.

The converse also is true, namely that, if L, M, N be\points
on the sides of a triangle for which relation (L2 hoh:.ls good,
they lie on a great circle. .‘,‘s N

165. If O be any point within a sphericgl. tm‘}nrﬂe ABC, and P
any other point on the sphere ; and if 2?1«1\4?10, 2n, be the sines of
the iriangles OBC, OCA, OAB; then %

12y 608 PA - 1ty 008 F’B+n3w.<s¥0 7 oos POLT

;,o

=1

F

N Produce AO to meet BC in F,
) Apply to the points P, B, F, G the theorem of Art, 143 (11}
and we gat

sin FG cos PB + sin BF cos PC = sin BC cos PF.

*Bee Nixox or Russers, loc. cit.
t This theorem is dus to Dr Casuy (Spherical T'rigonomeiry, I- 1)
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Applying the same theorem to the points P, A, O, F we

got . . )
sin FO coa PA 4 sin OA cos PF = sin FA cos PO,

The climination of cos PF from these resnlts gives

8in FO sin BC ¢os PA + sin OA sin FC ¢os PB + sin OA sin BF cos PC
==&in BC sin FA cos PO.

If we multiply this through by sin F, and notice that
sin BCsin FO8in F=2n,, sin QA sin FCsin F=2n,, ¢ w’.’;’
sin QA sin BF sin F= 2n,, sinBCsin FAsin F=2a,

we get finally \
iy €08 PA + 7, 208 PB + 0 cos PC =1 cos PQ. ....... (43}

166. If the base BC of a spherical driangle bgﬁé?n, and the ratio
sindb: sin e, the locus of A is @ small cir cfg: v

Since the ratio sin 1b: sin J¢ is gwen, the ratio of the
straight lines joining A to 8 and oG Js given. Therefore A
must lie on a certain sphere with respcct to which B and C are
inverse points. The locus of ANs the curve of intersection of
this spherc with the oricrinQ sphere, namely a circle.

3

167. If tweo sphmca‘b\bwngles have their vertical angles equal,
and the difference of the base angles of the one equal io the difference
of the base angles, sy" the other, then the ratio of the langents of the
halues of the siles. opposite the buse angles of the ene is equal o the
correspondiagnratio for the other.

Let thevelements of the second triangle he denoted by
accentéd letters, and lot G, C' be the equal vertical angles.

m\h‘ﬂm the second of NAPIER'S analogies we have

\ %ﬁ%=mn%(;\—8)t&n%0
=tan 1 (A - B)ytan 3G
_sind{e - ¥)
=in Ma +F)



130 SPEERICAL TRIGONOMETRY. 1§ 167

Hence
sin }{a+6) - sin L{e - b) sin} L (a —|—£
gin 2(a,+b)+sm ini{a—b) sinf{& +&
tan 3b  tan &
tan 2o tan de”

sin 3 (@' - ¥)

Ty

ar

Triangles so related have a certain anslogy to similer lnanc
triangles. A\

o)

EXAMPLES XT.

1. Solve ihe triangle having given the sides «, . i .L ’Lhe median M
g g

\
¢ ot

2, Solve the triangle having given the sides *~\m1 ilie medinn my

8. Solve the triangle having given the angle R m.l ihe zegments inte
which the side b is divided by the b]bb(’tﬂ}"\t\#lli oppasile sugie.

4. Tf the baze AB of a spherieal tria}ug}e\;‘\BO L prodneed to o poiak
0 such that o\
san BD:I—‘"ONQ sl e
ORReose vosia - b
shew that ™
bmcu)se Cb—nma—bjf:]n b efn AD.

Hence shew that ik t,he Tase of o spherical triungle he ficed, and the
vertex move so thft “Bee s of the sid s remains vonstant, a puint maf
be fonnd on theb@u produced, sueh that the cosine ol tle distance of
the vertex fr&{\tlus point bears a constant ratio o the cosine of the

distance gf'the vertex from o certain fixed greal vivenlar are.

> N . o
P\ (R T. T., 1899

\By'Q, R aru the feot of the perpendicalavs frou the vorlices A, B, Cof
samgpherical triangle on the opposite sides: prove thak B is a biseetor of
\t’HL angle PQR; and shew that, when the triacgle ABC is acute- angled,

cos POR = et — eod®B - - _'L"O“A":‘QB‘-OL’O
Q’ “eosHA 4 costB 4 cox’C - Bpox A dos BeosC
(R. 17 L, 1858.}

6. If the triangle ABC be such that the small eirele a0 AR ar rh.a.unEtEf
passes through C, prove that cotAcot B=cos? 1 (B U T 1506.)

7. If two sides of & spherical triangle he supplementary: prové it

the median passing through their intersection iz a adrant
(B, UL I., 1894.]
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8. If the three internal bisectors of the angles A, B, C of a spherieal
triangle iuterzect in O, and meet the opposite qdcs in P, @, and R
reapectively, prove that

sinPQ @0 _ sinRQ
sl gin PA™ sin b sin QB ™ sin csin RC
1 . .
5% + 5o s I (5 — o) ein (5 — B sIn (s — ¢}
(R. U. L., 18‘}5')

9, If the pnints where the internal and external blsecto}"s. %3 “the
vertical angle A of a spherigal triangle mect the base b P and Q
respectively, yrove that . ..,'\\’

cos BPA=}{eos G - cos B)see 3A A\

and that
cos PQ=- - sin{B — Cjsinf TQ\\'

VicosB + eas®C - 2 - cqspln—‘cos B cos Cp
O (R U1, 1805

v

1). ABC is a spherical triangle, E ig} the mul point of BC, and AD i
drawn at right angles to BC; shew €]1a.t
tan ED sin(B -tC)x tan e sin{B - C).
Tutting ont of the question alPeases in which ED exceeds a guadrant,
find under what blrbul‘nstxﬁg&a D and B are on the sams side of E, and

under what eir uumstancea, hey are on opposite sides of E.
{Scl and Art, 1594.)

I1. ABCD is af wphermal quadrangle, and E, F are the mid points of
the arcs CA a.n{l DB. Shew that

ol A&Tms BC + cos CD + cos DA=4 cos § CA cos }DB cos EF.
{3UDERMANN.}

b ¢, d ave four great circles, and e, / are the great circles
hl§f“ {ng the angles (er) and (2b). Shew tiat
3“\; " cos(nb} - cos (Ac) + cos(od) + con (de) = 4 cos § (ca)cos § (Fb)eos {ef).
) {GTDFRMANN. )

O\

¢~ 4
RO
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CHAPTER 1X. SO
PROPERTIES OF CIRCLES ON THE SP%EB‘E

168, If the corners of a spherical quad ﬁw“eral lia on g
small circle, the sums of its pairs of\op 0511:3 angles ame -
equal.* AN

x";"’ T ——
A&
\ T.et ABCD be the quadrilateral, and O the pole of the smadl
‘\ circle. Join O to each of the corners; then the triangles 86

;"\ ¥ formed are isosceles, and consequently
A
\/ oba-0Ap, obc-obp, oBa=0AB, OBC=OCB.
Adding corresponding sides of these equalities, we geb

A A A M "(1)
ADC 4 ABC=BAD + BCD. ...covvvummaase®

*Lexerr, Adcia Petropolitana, 1782,
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If the quadrilateral be crossed, as in the second figure, we
find In 4 similar manner

A A A A
BAD +ADC=ABC +BCD. ._.................. @)
Both cases are included in the following enunciation,

$

If A B, ¢, D ba four pointgg:c'utl"a small ¢irels, and if the arcs
AD, BC intersect in P, themy

PE\D:;PEC —PAB — PBA. 1rerierreeerererae (3)

169. Spherical’power of a point with respect o a circle.
From the p{'é}’ri‘éus article it appears that the triangles PAB
and PCD azdrklated to one another in the same manner a3 the
triangleigdiscussed in Art, 167, whether P be inside or cutside

the su\@l}fﬁircle.
Hehice tan 3 P8 _ tan 5 PD
N tan {PA  tan }PC
“\'Y0 that tan 1 PAtan 1PD =tan $1PBtan 3PC. ....ccoinnes {4)

Thus the product tan 2 PAtan 1PD is the same for all arcs
such as PAD drawn through P.

To get a convenient expression for the constant value of
this product, we have only to take as a particular position of
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PAD the are joining P to the pole O of the cirele.  Then if we
denote the angular distance PO by 8, and the angular radius
of the circle by p, the particular valuc of PD is p+3d; and
that of PA iz 8- p when P is outsids the circle, p-- 3 when P is
inside.

Therefore, for P outside, \
tan L PA tan LPD =tan 1 (8 +p)tan (6 - p),.., AW (5)
for P inside, “ ‘.‘
tan 1 PA tan 1PD =tan 3(p + &) tan { (p’7 8) ......... (E’))i

When A and D coineide, say at T, the :ru,¥T touches the
cirele at T, and the length of the mnﬂcr\ dve i ziven by

tan?} PT =tan Z{ 6+p)~@.§l\l (§p) wovee (T
cos p—cosd
2os p+cosd
called #he spherical power of i}’m point P with respel o the circle.
It is positive when P 13 {)‘utulde the circle, negative when P is
inside.

The thoorem of\bhls Article is so imporiant that we ghall
give another{@cﬂ‘ of it.

The constant tan{8+ p) tarl IE-p), is

170. If@)yvariable arc of a great circle, passing through &
fixed po}nt P, cut & given small circle in A and B,
D tan-1PAtan -} PB
=
\K E’onsta,nt * 5
{\"From O, the pole of the small circle, draw the ar¢ oM

f:' perpendicnlar to AB,

Clearly the triangles OAM, OBM are symmetrically equal
and therefore M is the mid point of AB.
From the right-angled triangles POM, AOM

cosPM_ 1 cosAM
cos PO cos MO cos AC

#LexsLr, Aca Petropolitans, 1782, p. 66
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therefore

ot AM — ooz PM _ cos AD - oS PO
cos AM +ecos PM cos AD + cos PO’

or,

tan ;(PM — Ab Y tal (PM 4+ AM) =tun } (PO ~AO)tan 1 (PO +AO).

This is the same ag %
"\ a o
tan X P{\Ea}} PB=tani (8 - p)tan 3 (840}, ..... {8
the requirad 1‘e-s1.1Lt-.\\ '

k 4 »
m\.J
171 1f fm‘l{}i varighle point P on a fixed great eircle PN
the spheridal”tangents PE, PF be drawn to a given small
circle,\%&}' product tan LNPE cot #NPF has a constant
valud®
Xm0, the pole of the small circle, draw the are ON per-
pendienlar to PN,

Clcm‘[y the are OP DLisects the angle EPF.

TGUDERMANY, Nicdern Sphivik, §206. This constaut may be called
the sphericas power af the gregt circle with respect to the swiall cirele.  (See
fout-note 1o Reviser's Freface,} Tf the great and small circles intersech
b an angle ¢, the spherical power is equal to tan® }¢.
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In the right-angled tﬁaugﬁé‘fm P, ONP

sin EO“: i PO = gin NO
sin{EPO—sm T EnNPO’
therefore AN

&S(RN'PO —BinEPO sin NO — sin ED
3 . = kbl
Bin NPQ +sin EPQ  sin NO +-8in £0

or »'tanl(NPO EPO) tan1(NO -EQO)
:‘? tan 1(NPO + EPO) ™ tan L(NO+ EO)

o,o

gin

Deqote NO by p, which is & constant. The equality ‘s seen t0

Qsc*tha same a8

tan INPE tani(p-p)

BE= . ererseeeenl®)
tan }NPF ™ tan } (p + p)

172, Relation between the arcs joining four points on 2

small circle,

Let the points, taken in order, be A, B, C, and D. By
ProLeMy’s theorem we have the following relation gubsisting

between the lengths of the chords,
AB.CD+AD.BC=AC.BD. .......
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Now if R be the radius of the sphere
chord AB=2Rsin1AB; ......cvvnn o (11)

hence (10) may be written in the form

sin $AB sin 30D +sin JAD sin 1BC=sin 1ACsin 1 BD. ...(12)
This i3 the required relation ; it holds whether the circle be &
small or & great cirele, It must, of course, be understood that,
whether the eircle be great or small, A8, etc., represent args' )\
of greaf eircles. O

173, Relations betwaeen the mutnal distances of four 'pomts
on a great circle, ?
Let the points, taken in order, bo A, B, G, and
Ifweput AB=6,  BC=¢, CD =%
then AC=0+¢, BD=d+y, AD=O+d+y;
and any identieal relation that existd\between the tri gono-
metrical functions of 6, &, ¥, 6@y ¢+¥, §+b+y, holds
aqually for the corresponding funchlons of AB, BC, etc.
For example, ™
8in #sin ¢ + sin ¢ sin (6 + Q&-quz) gin {0+ ¢)sin{¢+¢);....{13)
and therefore, for four peints on a great circle,
sin AB sin Q*D\i- sin BC sin AD =sin AC sin BD. ......{14)
Similarly \\
cos AB'gos CD —~ cos AC cos BD =&in BC sin AD. ...... (15)
An endless {amber of such relations may be found. Every
relatmn 'b.gtween the trigonometrical functions of the ares holds
)?w. ell for the same frigonometrical functions of any
9'1 ultiples or equi-submultiples of the ares.

¢ 174. To find the locus of a point on a sphere such that the
™ Sphencal tangents drawn from it to two given small circles
are equal.
Let A, B be the poles of the small circles; @, b their angular
radii ; P s point such that the spherical ta.ngenbs PL, PM drawn
from it to the circles are equal.

N
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Draw the great circle PO perpendicnliy to AB and meeting
it in O.

P

Al S
LN

Then, because the anglesiiit 1, M, and O are right angles
o3 E{_ = t‘OS_F’)E oo AV vas OP,
N COa er COE

(\J cos PR cox Q6 .
: CosPM="—"""_" .~ . cos 0P
and N\ QQ cos b Cos 6 v
IIenc.e,taéﬁL = PM,
AN\ €08 AD  cos OB oereenans(16)
x;\s.l cos = E(__);; ,flj 4w
Y 20 (i)
"/ eOS COS :
arafor — — L=l oconstant, ..o
e therefore s OB = gos =2 known cons
‘:g" . . . . }-
(O Thus O isafixed point, and the locus of P is & great ¢ireks
\ ) namely that drawn through 0 at right angles to AB.
p £

This groat circle is called the raqdicn eiveli of the t'wo gﬂ,{enl
circles. Clearly, if the given circlos intersect. their radic
circle passes through their commgp points ; in this case parb :E
the locus is within both circles, and the corresponding tanged
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have no real existence. Remembering however that the square
of the tangent of half the spherical tangent from a point to a
tircle is equal to the spherieal power of the point with respect
to tho circle, we may define our locus as the locus of a point
whose spherical powors with respect to two given circles are
equal. Stated in this form, the property is intelligible for
points inside as well as for points outside the circles. Ko
NS °
175. Coazal Circles, - y
Definition, A system of circles on a sphere which is smﬁ hat
wll pairs of circles of the system hawe the same radical ma'\k 15 called
@ conzal system of civeles.
If A, B, C, D, etc. be the poles, and a, b, ¢, al&e‘tc the radii of
the circles of a coaxal system, it is clear thasy”
(1) A, B, €, D, ete. must lie on the sama\great cirele,
(2} There must be a eortain point G {sHe axial centre) on this
great circlo, such that ™

N

cos OA _cos OB Pt O__C _cos oD ote. oo (18)
cas & Tcosh. SNcose  cosd

(8) The tangents to all.these cireles from any point P on the
radical eircle are equsgl“,,\and a circle, with P as pole and the
common length of ¥ahgent as radius, cuts all the circles of the
syEtom Orthonrona‘lly

(4) It two Gf; the circles intersect, then all eircles of the
system g0 't\hmw?h the same two points; this happens when
tho equabyatios of formnla (18) are greater than unity.

(3)When the ratios of formula (18) are less than unity,
equal to k say, there are two pointcircles of the system.
‘Rhe‘}’ are on opposito sides of O and equidistant from it, the
) distance bein g cos™k.  'These are called the Hmiting prinds.

(6) When two circles touch, the axial centre and the
limiting points of the coaxal system to which they belong
eoincide at the point of contact, and all eircles of the system
touch one another at the same point. This happens when the
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ratios of formula (18} are equal to unity ; the corresponding
case is one of transition botween cases (4) and (5).

176. To find an expression for the length of the spherieal
tangent drawn to a small circle from a point on another
small circle. N

Let A and G be the poles of the small circles, @ and gathelr
radii, O their axial centre, P a point on the circle 'C,;a,\tfd PL
a tangent arc to the cirelo A, Draw PN perpendicular to AG.

N

NN .
Using the&osine formula in the right-angled triangles PLA
PNA, PNE, we readily get
cog &*€os a cos PL. = cos @ — ¢05 PA

‘:\.": — o8 — (_'Oﬂh! COBC
i:\;" =CORA T e NG
O coso{20250_c0s A}
=CO8 01 Gos OC  cos NC
‘\"‘\; W _ g_}n_AC sin OE (Al't 173’ form. 15)4
= 0OB0 . 50T cos NC

sinONcosc sinAC

C0s OC cos NC ' eosa

Hence 2sin?IPL=

it
177, If A, B, C be three circles of & coaxal system and
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from a variable point P on C tangents PL, PM be drawn to
A and B, then sin IPL is to sin 1PM in a constant ratie.
By the previons Article,
sin ON cos o sin BC
cos OCeos NC ™ cosd ’ I\

8 sin® {PM =

dividing sides of (19} by corresponding sides of (20), we get A
gin? {PL.  sin AC cosh -

sin? JPM sinBC “cosa ~TTT T (Ej)

The right side of this equality is the same for all pes{it%&?ns of
P on the circle C, and therefore the left side is contant.

178. Condition for the contact of a given’cir.cle with the
circumeirele of a given triangle. 9 .\

B

NS
"\ A B, C are three points on a circle ; AX, BY, GZ are spherical

3

tangents to another circle ; then if, of the three products
Sin $AX sin §BC, sin }BY sin3CA, sin 4CZsin JAB,

the sum of any two is equal to the third, the eircles will
touch,
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Let L be one of the limiting points of the coaxal system
determined by the cireles ; then, by the previous Article,

gin JAX _sin §BY sin CZ (1)
sin JAL sin JBL sindCL "7 e -

sin 3AL sin §BC, sin BLsin JCA, sin 1CLsin JAE)

the sum of two is equal to tho third. Bug, \vhegliﬁﬁi,s is the
case, we know by Art. 172 that L Jies on the ci CIEPABC ; that
is to say, the limiting point lies on one of fho)cireles ; there-
fore the circles touch.
0 ¢l 0 A

179, If two small circles cut orthogonally, the plane of
either passes through the vertex ¢f '.th'e cone that touches the

gphere along the circumferencg»df the other.

Let A, B be the poles of thelfwo circles, P one of their points’

of intersection. '\

SN g

N\

J;.\’\Since the are AP and the circle B touch one anothor at Py

¢\ they have the same tangent lipe at that point. And this line

" \¥;
\

lies in the plane of the circle B, and passes through the vertex
of the cone that touches the sphere along the circumference of
A. Therefore the plane of B passes through the vertex of the
cone.

From the result just proved we make the following obvious
inferences ;

O\
Therefore the specified condition becomes that, of the threen
products 9 \: A
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(1} If any unmber of circles on a sphere have a2 common
orthogonal circle, their planes pass through a common point,

{3y If any number of circles on a sphere have two common
orthoporal circles, their plancs pass through two common
points ; that is to say, they pass through a common straight
line, Thus, also, the planes pass through an infinite number
of common points; and so cireles which have two commong . \
orthogonal civeles have an infinite number of them. O

Now the circles of a coaxal systera have an infinite numher
of eommon mthogonal eireles, having their poles on the’ radlml
crcle. Ience the planes of the circles of a coam‘}x system
pass through a common straight linc, which lict\jn" the plane
of the radical cirele, o\

This property of a cosxal system is giyen :by Dr. Caspy as
the definition of such a system, and \te/deduces all other
properties from it. See his bpkarzcal I’?*zgonameﬁ?y, Chap. vL

180. To find how many groat, cltgles can be drawn to touch
two given small circles. N

Fu 1 P2,
Let A, B b the poles and a, b the radii of two small cireles.
It possible lst these buth be touched by the same great circle,
Whose pole 35 0, We shall denote the distance AB by 8, and
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when the radii ¢, 4 are unequal we shall suppose @ £ ba the
greater.

If the small circles lie on the same side of the great cirele,
as in Figure 1, the great circle may, from analogy with plane
geometry, be called an extornal spherienl eommon tangent,
of the small circles. Olearly when one snch tangent exighs
there is also another, and the two are symmetrically &thated
with respect to the urc AB. O

Now referring to Tigure 1 we see that, in the.thiangle ADB,
Ad=3m—a, BO<1r-p, and AB is what v.vq.fha,v'e called &
But two sides of 2 triangle are together gr'eafse? than the third,
and hence the triangle AOB is only possiblavprovided

AO+ 0B >>AB, and AQ 4B > OB ;
that is, provided = — ¢ + b - 8 and 844 ~ b

Thus if 8 lie between a-bsind 7 —(a+b) there are two
oxternal common tangents, bt not otherwise. This result
may be stated thus: t\wg.’:given circles have no external
common tangents (1) if\gits lie completely inside the obher,
(2} if the circles havingf the same poles, but radii respectively
the complements ,df\the original radii, lie completely outside
one another. '(}‘&Ding these latter the complementary circles
of the 0‘58'1'“{* small eircles, the result may be stated even
more compactly thus. Two cirelos have or have not external
commo{Aangents, according as their complementary eireles
do or'd® not intersect,

A the limiting case when § bocomes equal to ¢ — b, the two

B8ternal common tangents coincide, their points of contach

with the small eireles also coincide, and the figure becomes
& great circle and two small cirles all having internal contact
with one another at the same point.

In the other limiting case, when & hecomes aqual to
T~ {2+5), the common tangents again coincide, but their
coincident points of contact with one of the small eircles do
1ot coineide with their coincident points of contact with the
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other. These points of contact are in fact diametrically
opposite to one another, and the small circles do not in
general touch each other at all; however each has external
contact with the circle antipodal to the other; their com-
plementary circles moreover have external contact. This
cage hag no analogue in plane geometry, A

If thero be a great circle touching two given small circles N,
and having them on oppesite sides of itself, the diagram will
bo of the same character as Figure 2. The great eircle ifi*this
case may be calied an internal common tangent, THS sides
of the triangle AOB are now lr -4, dr+5 and ¥\ In order
that the triangle may be possible it is necessary\bbat

OA+ AB > OB, and QA+ OB A,
or fa+ b and 8<1r—(aé'ﬁ). .

In the limiting case when & becpﬁl:es' equal to a+5, the
Internal ecommion tangents coincides and we bave the two
small eiveles touching each otheftexternally and touching the
great eircle all at the rame poirﬁb.

In the other limiting{“case, when & becomes equal to
T —{a~&), the two intgrﬁnl common fangents again coincide.
And now the figur borisists of two small circles not meeting
one another at all, and touching the same great eircle on
Opposite sides‘ &b diametrically opposite points.  Hither circle
has int-erna.l\icgntact with the circle antipodal to the other,

&

A\ EXAMPLES XIL
Proots of the fullowing theorems ave given in GUDIRMANK'S Niedere
.S i ik, They are set here as exercises, as the student who is femiliar
P\Yith the methods of Plane Geometry will have no difficulty in proving
\ shern for hingelf,
1. Two spherieal triangles, having the same vertical angle and the
Bame escrilbed cirele opposite to that angle, have equal perimeters.
2, The tangent at A to the circumeirele of a triangle ABC makes with
AC and AR angles whose difference is equal to the difference of the
angles B and Q.
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3. If, from a poiut P outside a small circle, tangent ares PA, PR and
a secant PCD be dvawn, and if the tangent arc at G mect PA, PB, and
AB in M, N, and U respectively, then

gin UN ain CM =gin UM sin NC.

{Definition. When this relation holds between four paints on a great
cirele it is sald to be divided harmonieally, and the tonr pointidou-
stitute a hormonic sange,] N

2 A\
4, If, with the notation of the previous guestion, AB iutevgset €D in
E, PE is divided harmonieally by G and D. g W

5. Shew also that Y

woyapn_ S AN sinaN (O
Sin*3ARB s MP s NP“:.\
6. Tf AB be a diameter of a small circle, 3ull "the tangent arcs &b A
and B mceet any other tangent arc jn M 5\;1’;‘}5‘@ respentively, then
sin®3AB = tan ANNMan BN.
% 3
7. ABC is a spherical triangle, agda’small cirele euts BC in Pand P,
CAin Q sud Q, AB in R and R’S tlien
sin AQ g.ifiﬁ@,’ _sin AR sin AR’
QR T TeosiRRT
and sin BP sin BP™Ngin CQ sin CQ'  sin AR siu AR’

sinCPsinCR " sin AQ sin A ' 5in BHsmBR —

8. The opposjtg;srdes of a spherical hexagon inscribed in a small
circle interseé\h; peints which all lie on the snme great circle,

9, If A.F.‘,:{'%P', B@, BQ', CR, CR' be tengents from the corncrs ABC
of a sphrieal triangle to & smull cirele,

xo&&iﬁ_BAP sin BAP" sin ACR sin ACR’ sin CBQusin CBQ

o onT S0 AGR sin AR’ sin CBQsin CBQ'
N\ R CAP sinCAP"* Sin BCR 41 BER' * 5in ARG, sin AR

NS R0, IE four great civeles through a point O intersest two otler great
4" dircles in A, B, G, D and A’ B, O, D respectively,
~e) BnABsn 0D _sin AOBsin COD _ sin A'B’sin D’
\V nACsin BD 5in AOC i BOD ™ sin A sin B'D

11. If ABCD he a harmonio range on a great circle, and M the wid
polnt of the arc AG,

tan*MC =tan MB . tan MD,
and sin2MB _ /sin AB\?
sin 2MD ~ | 5 )

sin AD
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18, The three diagonals of a complete spherical gnadrilateral divide
one another harmonically.

13, If 0, A, B, G, D be five points on the same small circle

sin JAB gin 40D sin AOB sin COD
#in 3BC sin AD ~ sin BOC sin AOD"

14, The diagonals AC, BD of a spherical guadrilateral, inscribed in a
circle, interseet in E. Shew that )
gin AE _sin JAD sin JAD ‘\

ain EG ™ gin $BC sin 4DC’ W

%
.

sin $AG _sin 3ABsin $AD +5in $BCsin3DC & )
sin4BD " sin JAB sin 3BC + sin JAD sin 4DC 44

15. If ABCDEF be a splherical hexagon inscribed if & ;:irc.le, and it
AD, BE, CF meet in a point, then \
sin 3AB sin 40D sin JEF =4in $BC sin ﬂ)E}M%FA.

18, If two circles cut orthogonally, any gfe}t‘ circle through the
centre of eithar {8 eunf by the circumferences/segli-hermonically ; that id,
if PRQS De the range, o\
sin PR sin 3Q8 =§iﬁ.§:Q':R sin 4PS.

17, A cirele, whose pole is P, twbﬁés three circles A, B, C all extern-
ally ; and annther cirele whase, pBlé is @ touches A, B, C all internally.
Shew that the are Joining R@\phsses through the point of concurrence
of the radical great circled'of &, B, C taken in pairs.

/

gnd that

18, i two eivcles soneh two other circles, & centre of similitude of one
pair fies on the ru,dtpé,} circle of the other pair.

19, Two aircles@ehose radii are cot—lz and cot—18 touch externally,
Bliew that t-lmgaﬂglc between their common tangents is

¢ \, 2eos[2/ag - 1f{n+ B)].
. {%.

NN
w\'“,’
\

N

>,

O\
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CHAPTER X. Koy

O
ON THE DUALITY OF THEOREMS RELATING TO
GREAT AND SMALL CIRCLES ON A SCHERE.
# {.'

181. The relation between a great circl"é}\and its pole is
somewhat analogons tc that which subgists'in plane geometry
between a straight line and its pole/math respeet to a circle.
The former relation is really a sindels simpler one than the
latter, and from it & method muy)Be developed which is easier
and more general in it-scfaiiplication than the method of
reciprocal polars, N

182, A great cirgle“has two poles, and it is somotimes
necessary to distifiguish between the two. For this purpose
it 13 usual 0'\feg’ard the great circle as traced by a point
moving inyond direction or the other; the choice of direction
is arbitralys bub once made it must be adhered to. If we
imagirte & person to walk on the outside of the sphere along
tho/gbeat circle in the chosen direction, that pole which lies 10

\Q;I"s\.iléft as he walks is called the left-hand pole of the circle,
~:,."\t-he other the righthand pole.* Thus, on the earth, if the
o direction arbitrarily assigned to the great circle of the equator

a \ Y%
b Y
4

bo from west to east, the left-hand pole will be the notth pole
of the earth, the right-hand pole the south pole. When We
speak of the pole of a great circle it will be understood that

* Attention was drawn to thiz important distinction by Gart®
(Divgu. gen. cives superficies cwrvas, 2, vi.), Cf. Scxurz, Sphirik, I 12,
and Mosros, dnal. Spharik, 16 and 18.
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the left-hand pole is meant. The direction assigned to the
virele will be indicated when necessary by an arrow.

188. In order that the poles of the sides of a spherical
triangle should be the corners of the polar triangle as defined
in Art, 25, it is necessary that the dircctions assigned to the

sides should be such that, following them, a person woul('i.\ N\

travel round the triangle keeping its area always on his leffei\ ™

184, The poles of small circles may be distinguishédNin a
similar manner ; hut when no special direction Is asiigned to
a small circle we shall understand by its pole tha’ﬁ’}ole which
i3 noarer fo its eircumference.

N
185. If wo take any point on the sph'{r‘e} there is a great
cirele of which, the proper direction hasgng been assigned, it
is the Iofi-hand pole. This great wirele, with this direction
assigned to it, will, for the puz:p@sé" of the present discussion,
be called the polar great circ{q.’of ‘the point, or briefly its polar
cirele, N

186, The angle betietn two great cireles is the angle
%)etween the posit’kﬁ ‘directions of their arcs at the point of
Interseotion.® A\

187. The ‘fiﬂio‘wing propertics of points and their polar
circles arc,Ao¥ readily verified :

(1) Ifthree points lie on a great circle, their polar circles
pasg oQ\I‘mlgh a point.

(ﬁ) The (angular) distancc between two points is equal to

“the angle of intersection of their polar circles.

(3) If A, B bo two points, and o, b their polar eircles, the
Intersections of ¢ and b are the poles of the great circles
jolning A and B. 'That imtersection, at which the less angle
between the positive directions of the arcs is described by a

—_—

* (LauUss, {06 Cif
L.8.T, r
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counter-clockwise * rotation from o to &, is the pole of the
eircle AB taken with its positive direction from A to B along
the less are.

{4) If a moving point trace out on the spherc any curve P,
its polar constantly touches another curve Q. And sinee thes
join of two points on P has for its pole the interscetion of the
two corresponding spherieal tangents to @, ws find, on ma‘skmg
the points on P coincide, that the polar cirele of any faint on
Q touches the curve P.  Thus the relation betw ecaR and Q i
a reciproeal one, and either curve may he called> bhe reciprocal
of the other. 'm,\

There are, indeed, two curves, antipodps of one another,
both of which are touched by the polap ivtle of the point that
traces tho curve P, Round one of, &%e the point of contaet
moves in the same sense (clockwxse or counter-clockwise 1)
in which the tracing point (iescrlbes P; round the other it
moves in the opposite scnga™ It is the f'ormer of these two
which iz called the recipi‘néﬁl of the curve P; when oval or
circular, its conczwity i¥¥towards the left of the great circle
which envelopes it/

(5} The rec:p\m&l of a small circle is anothcr small circle
The two Clrc have the same pole, and the sum of their
sphemal radn 1 a right angle. 1

188».; N’otatlon If we denote by a small letter, such as &

3 g"r’e&t eircle or a part of it, with a certain direction assigned

* If we suppose 5 watch to be Iaid on the outside of the sphere, with
"its face entwards, the sense in which its hands wonld rotate is thab
which we shall speak of 8 the clockurise sensc; the opposite sense Wwe
shall call eounter-clockwise.

T These terms could hardly be said to have a definite meaning
without further explanation, if applicd to the description of large
closed eurves of such shape as not to be included in one hemisphere;

but when applied to smail cirelos they are free from ambiguity.
i ScuuLz, Spharik, 1, § 44.
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ag positive, it will be convenient to denote hy —a the same
great cirelo or part of it, with the reverse direction assigned as
positive, Tt will also he convenient to denote by (g, b), or
sometimes more briefly by (), the angle hetween the ares a
and 4, measured from a to & in the counter-clockwise sense.

Ag

189, Let us consider nowtbhe relations that exist between
the figure formed by thtee great circles and its reciprocal
fgure, O

Let a, b, ¢ be thrbe great circles having directions on them
assigned as pofitive; these divections are indicated in the
figure by axr6Ws. et ABC be the triangle which they form,
and ABC,AB,C, ABG, the colunar triangles.

Let ghd.poles of a, b, ¢ be A, B, G, and let these be joined
by @&%”_Ch'cles «, ¥, ¢, forming the polar triangle AB'C’ and
igg\tolunar triangles A B'C, AB O, ABC, Then A B, C are

(“the poles of o/, ¥, ¢ when the directions assigned are those
) “indicated hy arrows in the right-hand diagram.

Tt is to be noticed that the iriangle formed by three great civcles
is that one of the various curvilinear triangular areas whick lies lo
the left of all ifs sides, 'The present figures arc so drawn that
ueither the triangle ABC nor its polar triangle ABC’ has
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reéntrant angles; but the oxelusion of reéntrant angles is
not ak all necessary in the present theory.

190. The first thing that strikes us in the present figures is
that the angle (¢b) is not the angle BCA of the triangle, but its»
supplement B,CA. And as the angle between two great cirgles

is equal to the angle between their poles, we have ‘O
7~ C=(ah) = A'B, O
and reciprocally &N
7 —C = (aF) = AB,

which are the fundamental properties of pula‘r"c}f supplemental
triangles.

ANY;

181, We have seen that if any pe ihtlie on a given small
circle, its polar great circle touches {on its left-hand side) a
certain other small circle. If, there&:re, we assume the existence
of the circum-circle of the trmngle ABC, we can deduce from it
the existence of a small (-,mclts touching the arcs o, ¥, ¢, and
lying to the left of eackrof them ; this is the mscnbed mrcle of
the triangle AB'C.. AfTence the fo]lowmg theorem :

The pole of the ﬁa@m&cmhwf civele of a triangle coincides with
the pole of the \@cmbed circle of the supplemental triangle; and
the spherical @udii of the two circles are complementary.

This Te&ulb enables us to dednce the value of cot » from that
of tacnol{by substituting the elements of the polar triangle.

\192 If we reverse the direction assigned to the great circle

'jﬂa that is to say if we consider the great circle —a, we find
% that it forms with the great circles & and ¢ the triangle ABC.

The pole of —u is A, and therefore A,BC, A\B'C are EI‘JPPI'3
mental triangles. Hence the following resu]b

The pole of the circle civeumseribed fo one of the colunar triangles
of a given friangle coincides with the pole of the cirele inscribed
the corresponding colunar trigngle of the supplemental triangle ; and
the spherical radii of the two circles are complementary.
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193, If A, P, B be three points on a great circle, and @, b
their polar great circles, AP={d'p’), PB=(p't'). Hence if P
be the mid point of the arc AB, p is the great cirele which
bisects internally the angle between the positive directions of
the circlos @, & The arc drawn through P at right angles to ~
AB has for poles the points on p distant a quadrant from the )
intersections of @ and b, )

'\
194, Let L', M, N be the mid points of the sides of, the
triangle A'B'C’; the polar circles of these points are thib, great
cireles {, m, n, which bisect the external angles of g&a‘ti-iangla
ABC. The intersections of 7, m, n with =, b ¢ wespectively
(say P, Q R and their antipodal points), aréypoles of the
medians A'L, B'M', C'M), (or p, ¢, #). NoW)p, ¢ r are con-
current (Art. 160), and thorefore P, QR 1ie on a great circle.

Again e arcs drawn through L', M, N' perpendicular to
¢, ¥{¥ mect in a point, namely the pole of the circum-circle
of WB'C.  Hence the points on I, m, = distant a guadrant

m:f;‘@m A, B, C respeetively, lie on a great circle whose pole is
\/the pole of the inseribed ecirele of ABC.

Again, the arc @ joining the intersection of b and ¢ to that

of mand n is the internal bisector of the angle A, and therefore

Is at right angles to I; hence X', X, the intersections of M'N’

and BC, are distant a quadrant from L.
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" And sinee the three arcs such as z meet in a point, namely
the pole of the inscribed circle of ABC, the six points such as
X, He on a great circle having the same pols as the circle
circumsecribed to A'B'C'.

195, LExELr’s locus may be derived as follows, Since the
length of the spherical tangent from A to the circle inscribed
in the eolunar triangle ABCis s the semiperimcter, it £ollows
that when one angle of a triangle is given in posrclgm, and the
perimeter is given, the opposite side con'ata,ntl) "totlches two
small circles, namely the inseribed cirele of the'eo"kma,l triangle,
and the circle antipodal to it, Of those 3¢N@the latter that
lies to the left of @ and is thercfore the bnb to be used in the
present connection. Now, reciprocatifighthe theorem, we find
that if one side and the sum of he’angles of a triangle be
given, the opposite vertex liogs constantly on a circle which
Is antipodal to the cirougs clrclc of the colunar triangle
(Art, 182), and therefore, p%Ses through the points diametri-

cally opposite to the cxtremities of the given base.

74\

"\

) 3

LeExEL’s locns.*

#1

"This is

196. The fglwing theorems are reciprocals of one another.

(1) If the;qf}aénitude and posi-
tion of thd\bake BC of n apherical
triangl®he’given, and the ratio of

1&5\;6 sinde, the locns of Ada u
I'cirele (Art. 168},
\ (") The sun of ome pair of

W% opposite angles of a four-sided

figure inzeribed in a small circle is
equal to the sumn of the other
pair (Art. 168).

(1} I the magnitude and posi-
tion of the angle A of u spherical
triangls be given, and the ratio of
cos 3B to cosiC, the envelope of
BC iz a small cirele.

(2') The sum of one pair of
apposite sides of a four- sided
fignre ecircumseribed to & small
circle is equal to the sum of the
other pair.

*The theorem reciproeal to LExer’s theorem, and from which W8

here derive the latter, was firet published by SoRruI¥, (RRGONNE'S
Ammlas de Mathématiques, XV, p. 302,
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(8} If ABCD be a quadrangle

nseriben in a amall circle, two of
the produets

#in 3 AB sin § CD,

sin $AC sin 4 BD,

sin 3 BCsin 3AD,
are together equal to the third
(Art. 172).

(4} Given two sides (together
not greater than  180% of a
epherieal triangle, the area is
maximum when the third side

RECIPROCAL THEOREMS.
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{3V H m, b, ¢, d be four great
cireles all touching the same small
circle, and i the direetions assigned
be such that the small circle lies
to the loft of each of the great
circles, then two of the prodacts

gIn & (ab) sin k{eed),

sin £ (we} sin & (bd),

sind(bc)sin diad),
are together equal to the thivd,

{4') Given two angled [tagether
greater than 180°) of A spherical
triangle, the perimbter is least
when the thifd ahgle is equal to

N
AN

is the dinmeter of the circum-
eircle {Arts. 155, 158).

the diamete{:of the inscribed
cirele, * .‘;\

197. Before passing to further theprems relating to small
circles, it will be well to consl'de;jzlﬁricﬂy the reciprocation of
chords and tangents to small giicles.

If through a point P we draw a great circle z to cut a given
small eirclo 8 in points A™and B, then the reciprocals of the
various elemionts of ¢ eMigure are as follows, Corresponding
to 8 we get another{giall civele &', The reciprocal of P is a
great circle ', thab\of # is a point X’ on the great circle p'; the
reciprocals oﬁf\,:.;md B are great circles ¢, ¥ drawn from X' to
touch the digéle §'. And so PA=(p'a@), PB=(¢'}), AB =(a'¥).
While i#9§"be the common pole of § and &, PO equais the
Com le':rﬁéht of the distance of p’ from ©. These relations are
eX.&ﬁ\fp ified iu the following pair of theorems.

A e variable arcof a great cirele,

\Passing through a fixed point P,

h
3

eut & given small circle in A and B,
the product tan #PA tan }FB has o
tonstant value {Art. 150}

-—

I through a variable point Pona
fixed great circle PN the spherical
tangents PE, FP be drawn to a
given small circle, the product
tan 3NPE cot $NPF has a constant
value (Art. 171).

* BALUTZER, Sterometrie, § 1v, 17,

Q



N o

156 SPHERICAL TRIGONOMETRY. 8198

198, If through a point P great circles z and ¥ be drawn fo
touch a small circle 8 at the points A and B respectively, tho
reciprocal diagram consists of 4 great circle p’ cubting a small
circle §' in point; X and ¥, at which points the spherical
tangents to the circle § are great circles o’ and ' respectively. £
And it is now secn that the arc PA is equal to the angle (p4),
that is, the angle between the great circle p” and the tafgen}
at X' to the small circle §'; it is, in fact, the angle.ai.}vhich
the arc ¢ cuts the small circle. But in estimating this angle
it is most important to bear in mind thap he positive
direction of the tangent arc o’ is such that the' g\_na.ll cirele lies

B ’x:\\:
” ~Nx\“ ;

N W

€ 3
A W

O
on its left-hind side. We shall define the angle as a rotation
from p' t?.\’tf, 4nd rockon it positive when the rotation is in the
counte{;;}}ockwise sense ; with this convention it appears that,
in :tfhlg. gure as drawn abovo, the angle of intersection of the

at and small circles is positive at X', negative at Y’ just

w08 the arc PAis in the positive direction of the great circle
0\' '3

while PB is in the negative direction of the great cirele #
Thus the convention may be formulated as follows. Let a
point travelling along a great circle p’ enter & arnall circle §
at the point ¥, and emerge from it at the point X’ ; the angle
of intersection of ¥ and the small circle is the amount of
counter-clockwise rotation from the great cirele to the tangent
to the small one a$ the point of emergence.



§200} COAXAL AND COLUNAR CIRCLES, 167

In the present figures P is represented as distant from the
common poie of § and §' by less than a quadrant; this pole
accordingly Yies to the left of p', and the angle of intersection
is acute. Dt if P were at a greater distance than a quadrant
from the pole of the small circles, the pole wonld lie to the
right of p’ (as, for instance, p” in the figure), and the angle of
intersection would be obtuse. Ko

199, The angle of intersection of two small circles J:slt\he
angle between the tangent great cireles at one of their¢ommon
points, the direction assigned to each tangent hemggsuch that
the corresponding small circle lies to the Jaft) " Thus, for
example, the angle of intersection of two small tircles having
internal contact is zero; and the angle of futersection of two
small circles having cxternal contact _igm\

It will reudily be seen that the angle" of intersection of two
small circles is equal to the lengbhe of the external common
tangent of their reeiproeals, s THus if two cirdles cut ortho-
gonally the common tangent. of their reciprocals is a quadrant.
If two circles touch 1nbema]1y, their reciprocals touch inter-
nally.  If two cn‘eles\ touch externally, the length of the
common tangent to\ their reciprocals is & semicircle; so that
the reciprocals on¢h the same great circle, on the same side
of it, at d]amftncally opposite points,

200, A3lMhe propositions given above (Arts. 174-178), for
circlv\t}f a coaxal system, may now be reciprocated, and we
thuS'\ehtain the properties of another system of small circles on
the sphere. We shall call this new system of circlas a colunar

~N \EWStGm, since all the circlos belonging to it have a common

\/ Dair of spherical tangents, real or imaginary, and may there-

fore be said to be inscribed in the same lune. In the left-hand

column are given the propositions already proved and defini-

tions already made; in the right-hand column are the recip-
rocal propositions and definitions,
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L The locus of pointa from
which the spherical tangents
drawn to two given small cireles
are egqual is a great circle(Art. 174).

II. This great circle is called
the radical cirele of the two given
circles.

III. The radical cirele is ortho-
gonal to the arc joining the poles
of the two cireles,

IV, If A, B be the poles, a, b
the radii of the circles, and O the
intcrseetion of the radieal circle

with AB,
cos OA _cos CB
cosa  cosb

V. O is called the il centre
Wof the two cireles.

of the two circles. 4
VL A system of eircles sife
that all pairs of circles of.'f,}ie
system have the same radieal ¥ircle
is called & coraand syste@ of circles
(Arte. 175-178)% 0N
VIL If A, BXE, ete. be the
poles, &, &, cpeic. the radii of the
circles of &'céaxa.l system, then
(1} A¢B,E, etc. st be on the
same/Preat circle (the circle of
res),

~

N2} There is a certain peint O
N {the axial eentre) on this great
~\' 3

circle, such fthat

cos QA cos0B  eos OC

COR &% CoRe

cogb
=...=k say.

(3) The tangents fo all civcles

of the system, from any point P
on the radical circle, are equal,

HEPHERICAL TRIGONOMETRY.
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T, All great circles which cut
two given smull circles at the same
angle pass through a certain pair
of diametrically opposite points.

II'. These points are called the
external cenlres of stmifsfude of the ’
two given circles. A\

Iil’, The centres of similitn
lie on the great circle juiéhlg the
poles of the two circlag

IV, If A, B liesthe poles, o, b
the radii of the %ip’c‘l’es, and O the
point on the gféa. vircle AB mid-
way betweehbiie centres of simili-
tude, x'\\:

{(€os 0 _cos0B,

) sina  sinb

\3". O is called the lunar centre

VI. A systom of ejrcles such
that all pairs of circles of the
system have the same external
centres of similitude Is called &
eolunar system of circles.

VIT. If A, B, C etc. be the
poles, a, b, ¢, ete, the radii of the
circles of a colunar system, then

{1} A, B, C, etc. mmust be on the
same great circle (the circle of
centres). )

{2 There is a certain point o
{the lunar centre) on this great
circle, snch that

cos OA cos OB _cos OC

ging  sind  sing

=.,,=k sy

(%) Any great circle p which
passes through the centres of
similitude, cuts all circles of the
system at the same angle.
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{4} A cirele with such point P
a5 pole, and the common length of
tangent as spherical radiug, cuts
all circles of the system orthogon-
ally.

{5) When the quantity %, defined
above, js greater thaun unity, ail
tho circles of the syatem pass
through two resl common points.

{6) When % iy less than unity
no two of the cireles intersect.

{TYWhen £ is less than un ity there
are two point circles of the systen,
that is, circles of zern radins.
These are called the fmiting points;

they are symmetrically situated

with respect: to the axial centre,,

{8) The rudical circle is itgalf o

P4

\

+8)

(8) When two circlbs tovich, in-
ternally or externjily, “the axial
teutre and theylimiting points
eoincide at th }oint of contact,
and all theseibeles of the system
touch onganether at that point,
mternagxﬂr externally, This is
the fasé when £—1; it is the
l‘fl‘\a-}lgiftion case between {5) and (8),

cirele of the eonxal system,

COAXAL AND COLUNAR CIRCLES.
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{4’} The length of the common
tangent of any cirele of the system
and g circle, whose pole is the pole
of such great circle p and radins
the comiplement of the. common
angle of intersection of »° with
the circles, is a quadrant.

{5) When the quantity %, def .

fined ahove, iz greater than unil;:y\,
ull the circles of the system have
the same two veal commnq‘ﬁan‘g’enb
greatb circles, &

(6') When k ia 188\ than unity
no two of the cirgles have an ex-
ternal commo,t{ka.ﬁgent great circle
(ATt 180).2°0

{7 Wh’% k is less than unity
there firg two great circles belong.
ing\to“the system. These are
enlied the Hmiting circles; they

7

N\ gre symmetrically situated with
3 respect to the lunar centre,

{8’} There are two point cireles
of & coluvar system, namely the
centres of similitude,

(%) When two circles touch the
same preat circle, either at the
game point or at points dia-
metrically opposite to one another,
the limiting cireles of the system
coineide with one another and
with this great circle, and the
lunar centre is its pole. The
system then consists of circles
each of which touches tho limiting
circle at one or other of two dia-
metrically opposite points, the
eentres of similitude, Thug each
cirele of the system: fouches each
other intornally, or else the circla
antipodal to it externally., Thiajs
the case when &=1; it is the transi-
bion case between (5') and (6').
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VIII. The radical cireles of
three small cireles, taken in pairs,
meet in a poinf,

IX. A circle may be described
to cub three given circles or-
thogonally.

X. A cirele can be described
such that the tanpgents fo it from
three given points shall havs
given lengths.

XL If A, B, C be three circles
of a coaxal systemn, and from a
variable point P on C tangents
PL, PM be drawn to A and B,
then

sin i PL
sin*y PM ™

sin AC  cosd
sinBC " cosa’

snd is therefore constant wheres,
ever P inay be on the circle C, 0N

XIL If A, B, C be three points
on a cirele, AX, BY, gpherical
tangents to anothef gircle, Lhen
if the sum of ‘s{\\f two of the
products N
smﬁAanéBC, sin3BYsin4 CA,

#in Y07 sin 1 AB,
is equﬁ\fb the third, the circles

ch
Ny

&

[§200

VIII'. The external centres of
similitude of three smull circles,
taken in pairs, lie on a great circle,

IX’. A circle may be described
whose distance, nieasured along
an external common tangent, from »
each of three given small cimlcﬂ
shall be a guadrant.

X' A circle can be c'[cscr]é.lc\d'to
cut three given great,cireles at
given angles, ( 4

XT. 1f A, B.,&Be thres circles
of a colunas system, and if a
variable Kng{,nt. to the circle G
eut thedirtles A and B at angles
o a.‘nd\,& then
O\ sln“u sin AC  sind

' §in?i8 sinBO  &ng

“and is therefore constant, what-

ever tangent we tuke fo the
eircle G,

XIT. If e, &, ¢ be thres great
circles touching a =small circle,
and eutting another small circle
at angles a, §, y respectively, then
if the sum of any two of the
products

sinjasin }{be}, sin}@sinlea);
sin L ein {abd),

is equal o the third, either the

small circles tonch one another

internally, or clse one touches

externally the circle antipodal to

the other.

201. Tt shonld be noticed that in the present diseussion the
circles of a coaxal system have tacitly been assumed aubject
to the rostriction thav their poles are never distant by more
than & quadrant from the axial centre; and therefore also
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the eircles of & colunar system are confined to one of the Iunes
formed by two great circles. In other words, we have con-
templated only positive values of % For, if we consider the
equality cos OA=Zcosa, where % is positive, we notice that if
OA > }m cos a is negative, and therefore @ > 4r. Thus we
get & small circle of radius greater than a quadrant, and
thorefore one which has (though from a different point_of )
view) been considered already in councxion with its nearer
pole. The restriction is unnecessary, but it shortefisthe
discussion. By extending the original definitionszand by
assigning an arbitrary direction of rotation te adch small
circle, instead of adhering, as we virtually havp done, to the
counter-clockwise sense, a theory could ge:;ﬁﬂy be built up
which would apply (in the case of ~Goltinar systems) to
internal as woll as external ceatres of Simlitude.

It is also to be remarked that e cannot, by making the
vading of the sphere infinite, defive from the method of re-
ciprocation here developed fox ‘the sphere a correspondingly
effective reciprocation of potnts, lines, and circlos on a plane.
For on the sphere a diagtam and. its reciprocal are in general
removed from one a{fo.thcr by a distance comparable with a
quadrant, and thqré%rc will be infinitely far apart on a sphere
of infinite radijley” consequently on a plane the reciprocal
diagrams arg%‘ﬁlﬁnitely distant from one another. In plane
geometry,.jfnf example, we have coaxsal ecircles and colunar
circles,, wibh properties easily deduced from those enumerated
in A}{%OO; but thers is no obvieus method of plane geometry
bySswhich the properties of either system can he inferred from

mffzﬁose of the other.
\)



CHAPTER XL A

HART'S CIRCLE, e

202, Hart’s theorem. It is a well-known thd@;‘em’ in Plane
(eometry, usually associated with the nang®of FEULRBACH,
that the inscribed and escribed circlog\ef a triangle are
all touched by another ecirele, naimu)y: the Nine Points
Circle. An analogous theorem .fof\spherical triangles was
diseovered by Sir ANDREW Har? i 1861, and his demonstra-
tion of it will be found in tbe.’{)uﬁrte-rly Journal of Mathematios
for that year.* It is to_thg effect that the inscribed eiveles
of a apherical triangle gn'd:its golunar triangles are all touched
by a fourth small ci"l:ele.' ’

We shall here.defuce a proof of the theorem from the
propertios of{{\}mfunar system of circles, making use of the
theorem ofdrt: 200 (XIT).

203 D% ABC be a spherical triangle, in which we shall
sup o%e that A is not less than B, and B not less than C.
'\X e have seen ({Art. 200, X') that it is always poasible t0

\\describe a small cirele to eut the sides g, b, ¢ of the triangle

3N at given angles o, 8, y; and further that, if a, 5, 7 satisfy

" \¥/

\‘:

the condition that of the three products
sin Jasin (3, ¢), sin}fsin 3¢, a), sinysinka B

* Extension of TRRQUEM'S Theovem respecting the cirele which bivects

thres sides of & triangle.  Quarterly Journal, Vol. IV, p. 200.
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the sum of any two is equal to the third, then the circle
which has been deseribed will have either internal contact
with the inscribed circle of the triangle, or extornal eontact
with the circle antipodal to the inseribed circle (Art. 200, XII').

& )
Let A, By, C, (b the points antipodal to A, B, C.
Consider .nciq.}-",‘ the small cirele H, which cuts &, b, and ¢ at
angles BB/ A—C, and A-B respectively. Then, since
&, C)=?{'§’A, the three products are
SHHB-C)cos LA, sinL{A-C)cos B, sin (A~ B)cos3C;
Ah&SE are respectively equal to :
O ~hsin(8-B)+}sin(s-C) bsin(s-0)-fsin(S-4)
’ — Lsin (S~ A)+}sin (S~ B),
80 that the sum of the first and third is equal to the secm}d.
Henee the circle H touches either the incircls internally or its
antipodal circle externally. Taking the partienlar case o.f an
equilateral triangle, w %nd that the circle H and the incircle
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eoincide. Thus the former of the alternatives iz that which
applies in the genoral case.*

204. Next let us consider the triangle AB,G,, formed by the
great cireles @, — 4, and —¢. The same circle H cuts thesed

great circles at angles O\
B-C, 7-(A-C), and z=-(A-B) .\~
respectively.  And therefore the products, \

2N

sinfasin(~b, ~c), sin{Bsini({-¢ a), sin ,/ i l(a -~ by,

are in this instance Q)
sin (B ~ C)cos 1A, cos H{A—C)sin %B s 1(A—B}sindC;
these are respectively equal to ‘L

—4%5in {8 —B)+ {sin{8 - C), C'} 8in {8 - C) + § sin (8- A
3sin(s—A) hi win (S — B),
80 that the sum of the first ahd third is equal to the second.
Ience the circle H has eifhier internal contact with the circle
inscribed in the triangle AEQCG, or cxternal contuet with the
eirele antipodal to itdhamely the circle inscribed in the triangle
ABC. Taking, tho Jparticular case when ABG is cquilateral
we sco that onl}\\he latter alternative is admizssible.®
205. Extgmding similar reasoning to the iriangles A;BC,
and ABB,"we find that the circle H touchos intornally the
urclc ﬁsulbed in the triangle ABC, and externally the circles
1:1 ed in its colunar triangles. Thus HArTS theorem i3

~.és}‘abhshed The circle H is called Harl's circle,

206. Bxpression for the radius of Hart's circle. The
spherieal radius of HanTs circle may be found as follows

Let p and R be the radii of HARTS eircle and the cireum
cirele of the triangle; r, r,, 7y ¥5 the radii, and I, 1, by I3 the

¥ These appeals to a particular case, 'shough comvincing, are somewhab

unsatisfactory. The ambiguity has its origiv i the impericet “pwlhcu
tion of & small circle deliberately adopted in previous chapters, Sce §336.
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poles, of the inseribed and escribed eircles. Then, since the
cirele H touches these four circles,
Hi=p -7 Hh=p+r, Hh=p+tr, Hg=ptr,

L
¢ N
&\
NS
N
\/
o
N
Yat ¥ 2
£
\:"\\
\
\
4 $ ’ 4

f g
Also if 2y, 3v,, 2w, 9r, be the singd\of the triangles 11,
11, 11,1, 11,1, we notice that o ~
v, 1 v =sin A {50 Al
= sig:{"rs:in s
i 1
henee v:vl:vg:véTl-—: .1 i il
3\\ Sinr sinr, “sinr, sinr
Now applying the thedrem of Art. 165, we geb
Y HIQ:%& 0z HI, - v, cos Hlg + v €08 Hl;,
which is equivalent’to
cos(PSr)  cos(p+7y) + cos{p+1,)  cos{p+ ?‘3).
\ﬁ)ﬁ? T sy 8in 7, sin 7,
Tht;s\\*“; 4 tan p=cob 7, + cot 7, -+ cobry - cob ¥

55 8I(s —a) + sin(s - ) +sinfs - ¢) - sin s}, (Arts. 119, 120)

~O —%tanR, (Art. 122)

\and therefore tan p =1 tan R.
This result was first given by Dr. SALMON ;* the proof of
the present Article is that given by Dr. CASEY.T
—
* Quarterly Journal of Mathematics, 1864, Vol. VI, p. 72,
t Spherical Trigonometry, p. 82.
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207. Another method of finding the radius of Hart's cirele,
The valuze of p and the lengths of the ares AH, BH, CH may
bo obtained simultaneously by another and meve elementary
method as follows.

Apply the theorem of Art. 145 firstly to the points I AL\
H, and secondiy to the points A, I, I,, H ; thus we geb A

. . . O
208 (p + 7,)3in Aly + cos (p +1,) sin Al, = cos AH sin (Al, ¥ 613 u
cos{p - r)sin Al; — cos(p +r;)sin Al = cos AR smgm.1 —An.

In these make the following substitutions, "j'“

' 4
.\ N

sin s . S1K ?"..
= n Al, =
038 TA' 3 edg ‘A’

\/ )
cos Aly=cosrycoa(s —¢), cos A{g%cos 7y 008{3 — B

gin Al,=

) =—
sin ‘A N sin JA

. sinv N\, sin ¢
sin Al = —L1, (SifA
€08 Aly = 008 77 008, “\cos Al = €08 7 08 (5 — )

divide the first equallj,:f .by 008 p sin 7, sin 7, the sccond by
cos psin r, sin 7, and shey become

cob 7, +cot'rg \2 tan p

AH
A \ cgzs—{cot 7, 608{s — ¢} -+ eob 7, cos(s — &)},
c&t‘ﬁ 2 cotr - 2tanp

N\ _ _cosAH ' B s
\M, o5 p {cobrcos(s — a) — cot r, cos s}

..\
“\.‘;3 Subatitution, on the vight-hand sides, of

O n L
\\ *  etc, for cotr, cobr, ste, reduces the equat-lons to the still
simpler forms

eobry+ ooty - Stanp= ciosﬂmgssm a’
cosp

cobr; —eot r — 2tan p= _cosAH smf.',-
nCosp
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These may be solved simply by addition and subtraction,
and the results are

tan p =1 (cobr + cobr,+ cobry,—cotr)=LtanR,

7008 p
and cosAH=1- cobr, +eotr, —coty, +cobr
T g Le0b T ooty L +eobr}
o UK 3
_1008p. . b . . L ¢ \A
=4 an—-[i{sm(s - +sin(s—c) - sinf{s— @) + SIS}
: N/
i 1 . -
cod Lheog Le £
2 S 2 C(}Sp. "'\ ‘Z
cos ta D

208. Mormal coordinates of H. If s, ¢, # be thia.l;ngths of
the arcs drawn from H perpendicular to the \sides of the
triangle ABC, sinz, siny, and sins are now réadily evaluated.

For the triangle whose corners are tk}@'f'}ot of the perpen-
dieular o, the centre of HaRT'S circle, &8l one of its points of
intersection with BC, is right-angled’and has its angle opposite
to 3 equal to the complement of B C.

Hence sin p cos (BC)=sing  (Art. 73),
which determines sin =, s:ir@e p is now, by the preceding Article,
a known quantity. \m’

209. Let O be the point of concurrence of the altitudes of
the triangle, Gythat of the medians, and H the centre of HART'S
circle,. W os@afﬂ shew that O, H, and G lie on a great circle,

Let the“perpendiculars drawn to the sides of the triangle
fmﬂl‘\ > (%, 45, 2,), those from H (z, g, 2), and those from G

(2 #5.%). Then, by Arts. 208 and 162,
.“\ -

~\ sin @ sin ¢ gin z
\ _>hw _ smy e
\4 cos(B-0) cos(C—A) cos(A-B)
_sing,  siny gin 2y

coSBcosC cosGeosA oS Acos B

sing,  sinyg, _  sing,
sinBsinC smCsinA sinAsinB




168 SPOERICAL TRIGONGME]IRY, 1€ 200

- Hence it follows that
sinz=£,sing, +1,sina,,
siny =#, siny, + ¢, sin y,
sin z=1, 8in 7 +f, 8in 2, O

where # and Z, are cortain quantitics the values of whigh ara
not required for our purpose. O

Therefore, by Art. 146, a certain point in the SayC ’armt cirels
as O and G is ab the porpendicular distances @) W% 2¥rom the
sides a, b, ¢ respectively of the spherical trl&fbg'fe and hence
this point must be the point O.

e\

210, To determine the positions( of the points of inter-
gection of Hart's circle with the srdes of the triangle.

Supposo that it intersects thesside AB at points distant A
and u respectively from A. & \\

Then by Art. 170 we havéf

cos —cos AH  cos la —cos Fhoos e
tan LA tan 3o 2 P ik 2 -
\ €05 p+cos AH  cos o +eosiboos e

In the same\qay we must have by symmetry

08 b — cos Joeos 3o
ta‘n £—Mtan Lic - p)= "2 %
< Flo—Atan e - ) = €08 ?b + cos Locos 1o

§u‘batftut1n g in the second of these the value of tan 1A tan 3¢
Q@x by the first, we obtain
™\

2 S

\ cos2la — 21 21 21F ein?ls
R\ tan 1A 4 tan Jp= sfla e0s?2 % cos®3e + cos?4h sin’ e
NS €05 15 cos 1 c(co.sﬁa+coslbcosfc}
,..\’"'l
%
\ } _ €08 34 — cos $heos ie cos $hgin 36
cos 15 sin nle cos 2a + cos 15 cos —c

From this and the first oquality we see that

+ 1, _ 1 1 1 =
tan 1), = S8 3¢ cos 3h cos Lo 1 coszr’mm £

cosgheinie 7 T cosla + cos 3beos 05 36
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211, If U, V; be the points defined by A and p respectively,
and U, V. U, V, the corresponding points on the sides
BC and CA, it is readily verified that the ares AU, BU,, CU,
are concurrent in the point whose normal coordinates are
proportional to

sec (37 +2A - 8), sec)(ir+9B-8), seci(ir+2C-8)

and the aves AV,, BV,, OV, in the point whose normal coordinates. -
are proportional to N

cosec (4w + 2A ~ 8), cosec y(}r +2B-8), cosee I(im -1\-29.0 ? s).

In the case of a triangle on a sphere of inﬁnitc"’:\adiua, that
i8, a plane triangle, $= 1, and the normal {i.& trilinear) co-
ordinates of these two points are proportig}{i: to

sec A, secB, pec C,
and cosecA, cosecB, _cbgdc G,
respectively. The former point»ji%ﬁ:hen the orthocentre, and
the latter the centre of gravitp-of the plane triangle.

Thus when the triangle beedmes plane, the points U, U, U,
become the feet of the perpendiculars from opposite corners,
and the points V,, V£V, the mid points of the sides; these
Six poiuts, of course,lie on the Nine Points Clircle.

Also in the cagtef a planc triangle the fornmla tan p=1 tan R
reduces to payz, a known property of the Nine Pointa Circle.
These facts bremplify tho remarkable analogy between HART'S
cirele afid the Nine Points Circle,

s'\\“

ay

AN EXAMPLES XIIL

; "1, From the ungle C of a spherical triangle a perpendicular is drawn

to the are which joins the middle points of the sides @ and : shew
that this perpendicular makes an augle §-B with the side o, and an
angle S A with the side b.

2. From each angle of a spherical triangle a perpendiculsr ia drawn
to the are which joins the middle points of the adjacent sides: shew

N
X
7\
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that these perpendiculars meet at & point, and that if =, y, = are the
perpendicalars from this point on the sides a, b, ¢ respectively,
. sinzx sin y sinz

sin (S~ B)sin (5-C) " #in (S~ C)sin (S A} #in {S- AJsin (§—BY

8. Through each =ngle of a spherical triangle an arc iz drawndo\
make the same angle with one side as the perpendicular thé
base mukes with the other side: shew that these arca nieet a
- and that if =, ¥, » are the perpendieulars from this pmnt on%]e sndes
@, b, ¢ respectively,

A\
ginx _siny sing A )
=
GosA” GosB cos G >

4. Shew that the points determined in Ex@s 2 and 3, and the
pole of HART’s circle, are on & great circle, i
State the corresponding theorem in Plag@{¥ometry.
. (&

AN
Y
A\
L))
4
\« >
Al
«“ e
AN
N
N\
7N
m\
.
\"\ g
L))
t..\s,J
> N
L)
. N/
n\{,,



CHAPTER XIL A\

ON CERTAIN APPROXIMATE FORMULAE ( 3

212. Wo shall now investigate certain apprommtes\formulae
which are often nseful in calculating spherical tnangles when
the radius of the sphero is large compared wztlr the lengths of
the sides of the triangles,

X
NN

213, Given fwo sides and the mc!mfm? angle of @ spherical
triangle, to find the angle betwgm th&’ckoﬁ'ds of these sides.

LG&B AG be the two sides of the triangle ABC; let O be
'Jhe “centre of the sphere. Describe a sphere round A as a
entre and suppose it to meet AQ, AB, AC at D, E, F respec-
tn‘a]y Then the angle EDF is the inclination of the planes
QOAB, OAC, and is therefore equal to A. From the spherical
tnann]e DEF

€08 EF = ¢os DE cos DF 4 sin DE sin DF cosA
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and DE=1(r—¢), DF=1(r—8);
therefore cos EF=sin 14 sin ¢+ cos 3bcosecosA ..., cennd(1)

If the sides of the triangle are small compared with the
radius of the sphere, EF will not differ much from A; suppoges
EF =A - #, then approximately .

oA\
NS “
and sin 3bsin go=sin® }(b +¢) — sin® J(d ~¢), | >

008 EF=cos A+ 0 sinA;
eos 3 cos o= cos? }( + ¢) — gin® 1{} ~cf; 3
therefore AN\
eos A+ 0 sin A=sin? }(b+ c) — sin? (AN
+ {1 —sin? i(b+cl;§ﬂ%}1{2 b~ }eosA;
&

therefore "
@ sin A= (1 —cos A) sin? 1(b Pey= (1 4 cos A} sin? b —¢),
‘gherefore  6=tan JAsin?{(hdye) - cot JASI2L (B — ). crevenn. {2)

This gives the cz’ycu-imp-ﬁéaéwe of 8; the numher of seconds
in the angle is foundfi{y dividing the circular measure by
the circular meagufe, of one scecond, or by multiplying by
206265, the m}pﬂ;}r of sceonds in a radian. If the lengths
of the arcs dorresponding to @ and & respectively be o and

B, and 7 ths radius of the sphers, we have ; and S a8 the
circlia.? JMeasures of o and b respeetively ; and the lengths of
the &ides of the chordal triangle are 2r sin% and 2rsin g

: .,s'\r\gpectively. Thus when the sides of the spherical triangle
0% ‘and the radius of the sphere are known, we can calculate the
\,..\ {0 angles and sides of the chordal triangle.

214. Legendre's theorem.* [, [f the sides of a spherical trigngle’
are small compured with the radius of the sphere, then each angle

¥ LearrDrE, Mémoires ds Paris, 1787, p. 338; Trigonométrie, AP
pendix V. Cf. Gauss, Disquisitiones generales circa muperficics Curtes
§8 27, 28, and MurTeys, Schlomileh’s Zeitschrift, 1875,
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of the spherical friangle exceeds by one third of the spherical excess
the corvesponding angle of lhe plane Iriongle whose sides are of the
some lengthe as the arcs of the spherical triangle.

Let A, B, C be Lhe angles of the spherical triangle ; a, b, ¢ the
sides; 7 the radius of the sphere; a, B, v the lengths of the

- . - 1] . i e
arcs which form the sides, so that - )g” % are the circular,{ )
NS ¢
meagures of «, b, ¢ respectively. Then D
cos A €08 & — cos b cose | AD
e T S A \
sinbgine A\
a? at )
now €08 @m=1 — g gy = ere e reoninennen(B
© IERTTe RaLAy )
8 N\
. @ o ¥
BN == — b v Nt rasnsaaninntesnntaaas 4
r 68 ’:’ udl ( )

Similar expressions hold for coéb and sind, and for cos¢
and sin¢ respectively. Hence, if we neglect powers of the
eircular measure above thrih we have

2N

3
u.g ot vl ﬁz . '}’2_ _ﬁ)
04?4\‘ I-5at 9474)(1 22T g

cosA: 7
e ;' BB
]\éﬂ; 1
t‘—&?{ +72—a?)+w(a4-,84—‘)’4”‘65272)
~\ “\:Q; E‘_;’(l - # 6':‘27
\ V4 1 211 e
2»97{‘89” r‘z(“h’e‘iﬂy‘i"ﬁﬁﬂy )}{ e }

i ki M@)
By 24Pyt

N
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Now let A', B, C' be the angles of the plane triangle whose
sides are a, B, y respectively ; then

Y . .
A= %
COs 2’&;* 1 l ;..(ﬁl\
and  28%24 2y%7 4+ 20202 - of . B4 . yi= 4ﬁ9723in2A’,J' \
L SinE A KoY
thus cosAzcosA'—’G/%é—. ‘}~(7)
b Buppose A=A+ 6 ; then N
CO8A=cosA’ — fsin A a.pproximgr.@g;";
yEn A 8 AN
P _BrEnA S NN 8
therefore ] 6 3?:_‘{\; _( }
where §' donotes the area of the,flafe triangle whose sides
are o, 8, v. Similarly P\
e+ S d ceo S 9
B=8 +3r-?{,g§nd C=0 Fgs e (9)
hence approximately O
A __ RPN S - 10
ATBRE A+ B 4 C 4 S mt (10)

7§
Sf : N/ . . s
therefore 3 1§\§,ppmx1mately equal to the spherical excess E

of the spheridal triangle, and thus it is cstablished that
X/

o) A=ALIE, B=B4+]E, C=C+1E

$7

¢ \so
.&iﬁ. It must be noticed that, if 8 denote the area of t}g}
’j’i’.\spherica.l triangle, the spherical excess is exactly equal to =
o N :

\ +/ Hence 8 und & are equal to one another, to the degree of
q approximation here employed. Thus the areas of the spherical
triangle and of the plane trian glo with sides of the same length
differ from one another only hy a small quantity of the order
of the ratio that either ares bears to the whole area of the

sphere,
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216, Approximate solution of triangles. LEeceNDRES
Theorem may be used for the approximate solution of spherical
triangles in the following manner.

(1) Suppose the three sides of @ spherical trigngle bnown ; then
the values of «, B, v are known, and by the formulae of Plane N\
Trigonometry we can caleulate 8" and A, B, C'; then A, B, C

aro known from the formulae \' \J)
g g N \ \
Awk oy BB g g C=C'd g o st(9)

(2) Suppuse two sides and the included amgle of. a\spﬁm{:cal
frmngfe Emown, for example A, b, ¢.  Then

=1Pysin A =}FysinA approximateb} /

Thon A" is known from the formula A’ ﬂ;\_ﬁ Thus in the
plane triangle two sides and the"lpcluded angle are known;
therefore its remaining parts canthe caleulated, and then those
of the spherical triangle beconie known.

(3) Suppose fwo sides andthe angle opposite to one of them in a
spherical triangle knownAQr example A, ¢, b, Then

§' = Y 5in ©' = 1oBsin(A’ + B)
‘=103 sin (A + B') approximately,

and so .ﬁ\'“' E__jﬁsmm.pa\ e rraraseanranees {11}
"\Q¢

The‘}hgle B’ is not given; but, for the purpose of substitu-
tionyn the expression for E, its values are obtained to a
o~ \ﬂ}}fﬁment approximation from the relation
\ 4 - -
sin B = B sin A= B sin A
17 - o
When E has heon obtained thus, A’ is got from the formula
A=A'+1E, and the problem is reduced to the solution ot the
plane triangle whose elements a, /3, and A’ are known.
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(4) Suppose two angles and the included side of a spherical
triangle known, for example A, B, c.

,_yisinA’sinB 4%sinAsinB
Then s :?2, sin (A’ + B} :72 sin(A 4 Bj \
This gives the value of E, and so enables us to deduco ‘the
values of A"and B’ from those of A and B. Henco @nighe
plane triangle two angles and the included side aro kiigwr.

(56) Suppose two angles and the side opposite to om}gf"f}eem n a6
spherical trigugle known, for example A, B, 2. ’.fﬁen ’
C=r-A-B=n-A-R approxhha\tely,

, _o%sin B'gin ¢
amd = o

= }o’sin Bsin(A + B).gesec A, approximately. ...(13)
Thus E is obtained, aud the Gorrected values of A" and B
deduced from A and B in thewisual manner. I only remains
to solve the plane triangles whose elements A", B, and o are
known, Thiscaseis fr,ecj'i'rbm ambiguity, because we are dealing
only with trianglesrwhose sides are small compared with 7,

nearly. R )

217. The jm}‘mr‘\tanee of LEGENDRE's Theoren in the applica-
tion of Sghéncal Trigonometry to the measurement of the
Farth’s sfefhce has given rise to various developments of it
whicheheblo us to test the degree of oxactness of the approxi-
matiori’  We shall consider some of those developments.

.\“fé“have seen that the spherical excess is approximately

8 .
equal to e and we shall begin by investigating a closer
approximate formula for the spherical excess,
218. To find an approximate value of the spherical excess.®
By 'HuiLmmr's theorem, Art, 134,
tan }E =(tan fstan 3 (s— a)tan (s - b)tan L (s C)]éa - (14)

Tr———— e

* Gauas, Disquisitionss, ete., § 29.
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and thercfore, approximately,

S S P

T N

~4to-a)a-t)o -t 1+ SHE=UHEI o g (o

132
5 n? 4 53 4 o2 e
_E?_@{l * P K \,n:‘
g %+ 32 4 o7
thus Eu_?_—(l + ) (lﬁ)

Hence, to this order of approximation, the arca of thc spherlcal
trinngle exceeds that of the plane trlan{:e ¥ the fraction
{a? + B2+ ¥2)/245? of the latter.

Another expression, which is sometlmes used, is derived
from formula (5) of Art. 132, R »,.:.,

sin ],E—-smCsm laam thsee de vivnennnn(17)
For, from this, approxmmbely

-1
fin 1B =sin © e@*m %)(“aﬁrs

and therefore
Sy g 8
_sII],,C (1 4+ — TQ)' .................. ( )

¢/

Of course (1‘6) may be derived from (18) by substituting
BinC 4 IENm*s € for sin C.

219;\130 find a closer approximation to the value of A*

sin {5 — b} sin (s — c) s(s— a,)
ginhsine be

”\ \f‘amce Bin 3A eos 1A = \/
\ ¥4

ginssin{s—-a) (5— b(s—-c)
ginbsine

and cos $Asin IA = \f

—_—
* Gavss, Disquisitiones, ete., § 27 ; CLARERS Ceodesy, p. 4T,
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therefore sin J(A—A')

sin(s-3) sin(s—¢)|? [sins su(s-o)\¥
, [ meap fins 0

T sinb sine}?
{ P¢ "} N
If we substitute for the squarc-roots of the sincs expréssions
given by the approximate formula e\
sind9 = 031 — L+ 2004, ...¢ .WT.".' ..... (20)
and notice that ) \~
Si(s—a—{s- D2~ (s—c)f=2BeN0 30 (20
fr{s—ayt—(s-byt-(s- 6)4—3\(3112—[—3))-1-62) ....... (22)
(s ~bB¥{s—e)*— 55 - a) Ebc(w B =) {23)
we readily get o\ o
;f:\—;ﬂ(:}3 %{1 %‘1—“?196?,, iy ) ............. (24)

Now replacing & bhy_ fb&value in torms of E, as given by
result {16} of the pre’vmus Article, we finally get
1 £ ; 25
e i R 3 = - T L il
\\A\.\J’ sET g0 4 < 2""1"’8“) @)

290, To ﬁnd an approximate value of (’: lL g
”::\’ SLmA_SmrI_
~ o) BnB sinb’
'\\ihance approximately
N ‘.\ (1 a2 at
NN sin A ¢ 611_‘ SE 20r4>
@ SnB iz
/ B (l b;-‘2+ 1709'4)

(1__+ at ﬁe ﬁﬁz ﬁd» 1)
672 1203 T 62 B6et 1200% +36r

B
S T (1 B e @
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921, To express ¢ot B —cot A approximately.

inB
CotB-—cotA=—— L (cos B0 s A) 5
=1n B 511 A

hence, approximately, by Art. 220,

_ Bosa B E-F \
cot B~cot A= = B(cos B - ~ cos A o g 008 A). ;O\
. N\
Now we have shewn, in Art. 214, that approximately \ W

T3y a? ot g Bl ot _ 2% 2y2? _ 24830
cos A oot Y2 m @l ot 4 Bl yt - 3BT Byl — AgHE

2By Bt AV
and cos B is equal to an expression of the same tjipé';}
therefore 6os B — g cos A= 512—7’82 api?}jc?}ﬁ%%ely.
Thus  cot B~ cobA= ;: l;f;:,g::;f; & Jrl?;z_ -
- o.a; S}fg{i - = +1:?&,'.5:2_ ag) """""" @7)

222, LrGrNDRE'S theotém is extensively used in practical
geodesy, where it greatly simplifies the solution of triangles.
It s desirable, ho;%«er, to enquire how far it can be used
with safoty, .
To fid anMpproximate value of the error in the length of
a side of a‘gphierical triangle when calculated by Legendre's
theorep\::: i
Skuyp}se the side 8 known and the side « requived ; if E be
?h{a.s,’pherical excess of the triangle, we have, by LEGENDRE'S
#theorem
\/ ! _ psin (A-3E)
a=Ff— =
sin {B — 4E)
Let 8a he the error of the side so computed. Its value wilk
depend on the value of E actually adopted, which may be
calenlated in more than one way. We shall simplify the
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expression for the error as far as possible before substituting
for E.

sin (A — LE)
=" S (B i) e (28)
Now approximately ~
sin (A—3E) sinA-{Ecos A— L EsinA \
$in (B - JE) sinB-1EcosB- LE*sinRB r:\:\'
sin A 1 A N O}
= — -3 - _ N _E
o B(I Ecot A-5E )(1 +EcotB %
_sinA £
= B{l + 2E{cot B ~ cot A) + $EZ cot BQsms B - cot A)}
. Sin A +1E sin A((3[)1: B —cot PQ(‘I\-T- 1E cob B) ........ {29)
" sinB sin B

Also the following formulagare true so far as torms in

volving #2: A
sinA_ e/ B2~ ol 30
Sin’BfB(l +mfii-‘T)’ ................... ( }
N .s 2__!82 )89 ?'- '—Cl'-:) 31
cot B—@tA . B(l ) @1

These maﬁ(be substztuted in the term of first order in E;
while th,e Jirst approximation to E, namely } l—-( sin B, is suffi
clenlz fur subs’mtubmn in the terms of order E" In the term

m is not small we must substitute the value of 1mnB

Q bt-amed in Art, 220,

“\.f;’o Thus we get

\~\ » :iﬁgg ig E{l Bzﬁ._:ﬂ(l + 7’8;(_);?“2)}

LR =ty
3 ﬁ 67% Jaysin B 1242

+_1 a’y? slnEB ol — }82 cot Bjonr (32)
36 7t ,Gy sin B
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muitiplying by f3, subtracting e, and again introducing the
first approximation to E in the terms of order EZ we got after
some straightforward reduction

Sa 252 _—__?_)[ %' 1. 7*82‘_3“”] rn(33)

§ aysinB " #2601
223, If, therefore, we caleulate E from the formula )
oy sin B M
T N
the crror is ,\\ \
w(B - (TH - 300)
B TR ) N (38)
But if we compute = from the equmtlochomespondlrlg to
(18} of Art. 218, wo have \\
._aysinB 347 L= 42
E= 903 __(1 .].—-—-)} YR i e (35)

and therefore the error of o g

ba= 2B - “’{Sgﬁ - B een36)

The crrors of ¥ 1{1«}7113 two cases are represented by cor-
rosponding exprese\\mls

224, To take qf gamenml example,* suppose the sides of & triangle
on the surfude f/the earth to be a=220, 8=00, y=180 miles. If we
use the firy mdthod of calenlating the sphorical excoss the errors of the
I‘UBlllt-iI‘lg'ﬁ.i'deg arc

AN Sa=+0-088, dy=+0026, in feet.
I }?e use the second method the errors are
N da= ~ G031, 3y=~0030, in feet.

3 “Thas 1t i scen thab the errors resulting from the use of Lecexoze's
\ theorem are very minute.

225, Approximate solution of a triangle having ome side

Small, When only one of the sides of the triangle is small
.--_‘_‘_‘_|_

* (LAREE's Ceodesy, p. 49-
L.3.mT, a by P
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compared with the radius of the sphere, the following ap
proximations are useful ; they are given by Col. CLARKE in
hig work on Geodesy-
To obtain an approvimale solution of o Eriangle vight-angled of C,
when a and b are given and b iz very small. O
If v denote the complement of A, it is veadily seen't,\ tV

and B are in the present Instance very small N\
4

Ve

tanB 1 "l
Now N
tand  sinda S\ IR

and if, for brevxty we denote the right sid€ b\' ?v, and expand
the tangents in scries, we get

B+31B% 4+ 2854 . _k(b+ F;M?b )y e {37)

whence it can be inferred that N8

L >

LY N

——-L{l—i— 3)2(1—-2, )~+ DB - (2 - 385 e {38)
Replacing the value of g ‘emd bearing in mind that
s{r{a +a)=sina(l +xcote),
when the Sq%@@f % is neglected, we find

QO Y e (39)

R gin{a + 15%cot af
the tainfs omitted in the approximation being of order &.
\,écgacln 8in V=sin B cos &,
* ~\therof0re VeBeosall — 252~ ..), oiienrininnres (40)
~\j;' which, when terms in # are neglected, may be put in the form
V=Beos{u+ %ot a) ooooovvennnninnes (41)
Further, if ¢ exceed & by the small quantity z,
cos{a + ) = cos ¢ cos b,
therefore w=$b%0ta — LB + 3 cotfajeota. .o (42)
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Thus, supposing that we may omit the fourth power of 3,
the solution of the triangle is:

¢~ a=ihcot a =1y,

b A
B=Snlaa Ty [ (43) R
90° — A=Bcos(a+ 1), R\

226, To oblnin an approzimate solution of the obla’gug-aﬁé?gd
triwngle when A, b, and G are given, and b 4s very small. ;50D

In the more gencral case in which & is small;f)}o C not
a right angle, the series already employed mag\be used to
find 2 - . AN
' tan 3{e - a) sin }‘,(C—‘A):\\.
C tunXd  sini(C :—tﬁ)’

For

and, if we denote the right-hand .m;ehiber by £, this leads to

TN

b

I ¢— o be computec &y this formula, & being small, and &
nomerically less thérd thity, the orror involved in omitting
the term #° is very small ; for the greatest numerical value
that /(1 - )22 3% can assume is 051, If then b be as
much as 2° the berm in 55 amounts at a maximum to 0°-000032;
it may the{efore in all cases be neglected, and so we have

sind(C—A)f. B sinCsinA
a—p( {1 AL ) ST

C0B{1 01— DRI — F) (2 39)...). (44)

#

2 S
al ¢— - PO
QO $H{C+A
NS s 3{C 1+ A)
g \; e following results, for a triangle in which b is so small that 5 may

\he neglected, are due to Mr. T' J, 'A. BroMwIcH :

¢ — a~hcos A— Jh%ot csin®A,
Baine=bsin A+4botesin, {46)
7~ G~ A=bsin A cot ¢ + 3b%in 2A{1 +2 cot?e).

They afford an approximate solution when b, A, and ¢ are given,
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EXAMPLES XIV,
MISCELLANEOUS EXAMPLER,

1, If the sides of a spherical triangle AB, AC be produced to B, @\
go thay BB, GO’ are the semi-supplements of AB, AC respectivaly,
shew that the arc B'C’ will subtend an angle at the ceutre of thegphere
equal to the angle between the chords of AB and AC, NS

N/
2, Deduce LEgENDRE'S theorem from the formula ¢ "f;.
mgg_g_ing(ﬁh -c}sin{c+a ~ b}':'. ‘

2 " sin (64 c—asin {a the)

3. If a quadrilatersl ABCD be inscribed ina'nall circle on a sphere
20 that two opposite angles A and C may lt)e%rt' opposite extremities of
& diameter, the sum of the cosines of thg\{i&es is constant.

4, In 5 spherical triangls if A=85 :,:‘Eb,fshew that

cos & eos Ad=cos (¢ + 1),
b, ABG is a sphorical t-riail;g.l:é'éach of whose sides is a quadrant; P
is any point within the trisngle ; shew that
cos PA cos PBos PG + cot BPG cot CPA cot APB =0,
and ...‘:tanABP tan BOP tan CAP =],
© 8. If O Do %, middlo point of an eqnilateral triangle ABC, and P
any point opMhe surface of the sphere, then
\ \ “1{tan PO tan OA¥{cos PA + cos PB + cos PC)2
= cos?&%‘— 208®PB + coe?PC - 002 PB cos PC — cos PG cos PA — cos PAcos PB.

\'Z\Tf ABC be a triangle having each side a quadrant, O the pole of
{the inseribed civcle, P any poiut on the sphere, then

“\'Tf” {cos PA+cos PB + cos PC)2 =3 cos?PO.
N\: 8. Trom each of three points on the surface of a sphere ares are
\ drawn on the surface to three other points situated on a greab eirele of

the sphere, and their cosines are a, B, ¢ s, B, o et B, ¢ Shew
that ab"c’ + a'be” 4 oF o = iy o +a'be + athe’,

9. From Arts 220 and 221, shew that approximately
log8=loga+logsin B —logsin A +%2 {cot A - cot B),



ON CLERTAIN APPROXIMATE FORMULAE. 185

10. By continning the approximation in Art. 214 so as to inelude the
berms involving %, shew Lhat approximately

- o _Bysin®A’ | fy(a®~ 387 308 sin?A’
cosA=cos A G 160 N

11, From the preceding result shew that if A=A’+§ then approxi-

mately
g Bysin A 1 +a2+7;5"‘"+ e
T g 12002 )

o

|
N

12. An equilateral triangle is deseribed on a sphere whose radiug i »,
and each of its sides is Jess than & third of the cirenmference of. Ngreat
cirele by a small difference & Shew that the square of a K f the

polar trisngle is drdv/3 very nearly. ¢ \\,
N
\'

%7
v

o)
AN

h 3 -

Os:\‘
«™y
N
VY
N

£ )

7 o/
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S
4 V&
Sl
N\
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N
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CHAPTER XIIL

GEODETICAT, OPERATIONS, RN
'\ “
‘927, One of the most important applications ,ofj."fr’igono—

metry, both Plane and Spherical, is to the deiqefmiﬁa-tion of

the figure and dimensions of the Earth 1t~self“,‘ and of any

portion of its surface. We shall give a bxief outline of the

subject, and for farther information rcxfe{\tb the article Geodesy
in the Encyclopaedia Brilannica, tofMRY's {rcatise on the
Figure of the Earth in the Encyclepaédia Melropolituns, and to
Colonel A. R. CLARKE'S worly O Geodesy, published by the
Clarendon Press, 1880, ,F.‘t).r" practical knowledge of the
details of the operat-ious:{ig'wﬂl be necessary to study some
of the published accotints of the great surveys which have
been effected in different parts of the world, as for example,
the Aocount ogjke,,mea.swement of two sections of the Meridional
are of Indim o
of the Ob?"’-‘:"f‘f‘@ﬁOM and Calenlotions of the Principal Trigngulution
in the Ovdmance Survey of Great Brifwin and relond, 1838,
ﬁ"\i’b;e'\ﬂrdmnce Survey, by Lient.-Colonel T. P. WHITE, 1886,
iwes a popular accomnt of the national survey, witboud

«f}bchnical detaila.

ay
NS

o N
&“\\ e 7

\:

228, An important part of any survey consists in the
measurement of a horizontal line, which is called a bose. A
level plain of a few miles in length is selected and a line is
meastred on it with every precaution to ensure accaracy:
Rods of deal, and of metal, hollow tubes of glass, and stecl
chains, have been used in different surveys; the temperatur®

N\

Lieut.-Colonel FvEREST, 1847 ; or the Aeount
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is carefully observed during the operations, and allowance

- 18 made for the varying lengths of the rods or chains, which

N

arise frora variations in the temperature.

229. At various points of the country suitable stations are
selected and signals erected ; then, hy suppesing lines to be

drawn connecting the signals, the country is divided into a "
serics of triangles. The angles of these triangles are observeds -

that is, the angles which any two signals subtend at a third:
For example suppose A and B to denoto the extremities jof
the Juse, and C & signal at a third point visible from{Aand B;
then in the triangle ABC the angles ABC and BAG a¥e bhserved,
and then AC and BC can be caleulated. AgataMlet D be a
signal at a fourth point, such that it is vigible from C and A;
then the angles AGD and CAD aro obs\er}ed, and as AC is
known, CD and AD can be calculated.

230, Besides the original base oﬁiﬁ:ér lines are measured in
convenient parts of the country-sitrveyed, and their measurcd
lengths are compared with thait lengths obrained by caleula-
tion through a series of triahgles from the original base. The
degree of closeness w;i{t“h,\which the measured length agrees
with the e-alctllated\tbdgth is a test of the accuracy of the
survey.  During¢the progress of the Ordnance Survey of
Great Britain dnd Ireland several lines have been measured ;
the last twa{m’, one near Lough Foyle in Ireland, which was
measurcd"iﬁ' 1827 and 1828, and one on Salisbury Plain,
which\' & measured in 1849, The line near Longh Foyle
1s nearty 8 miles long, and the line on Salishury Flain is
wsarly 7 miles long; and the difference hetween the length
of the line on Salis_bury Plain as measured and as calculated
from the Lough Foyle base is less than b inches (4n Aeocount
of the Observations ... page 419).

231. There aro different methods of effecting the ca}culatio?s
for determining the lengths of the sides of all the triangles ir

N
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the survey. One method is to use the exact formulae of
Spherical Trigonometry. The radius of the Earth may bhe
congidered known very approximately, let thiz radius be
denoted by r; then, if « be the length of any arc, the cireular
measure of the angle which the arc subtends at the centre of »
the carth is efr. The formulae of Bpherical Trigonomefry
give expressions for the trigonometrical functions of a}r,:SO
that o/ may be found and then a. Since in practic€ wfr s
always very small, it becomes necessary to pay atfention to
the methods of securing accuracy in caleulations $hicl involve
the logarithmic trigonometrical functions ,crii\gmall angles,
{Plane Trigonometry, Art. 205). ’

Instead of the exact caleulation of thebetingles by Spherical
Trigonometry, various methods of d@pproximation have been
proposed ; only two of these methade’however have been much
used. One method of approxiniation consists in dedueing
from the angles of the sphéfieal triangles the angles of the
chordal triangles, and then Gomputing the latter triangles by
Plane Trigonometry ,{s¢8 “Art, 213). The othor method of
approximation consists in tho use of LEceNnREE'S Theorem,
(see Art. 214) .\’

232, The'three methods which we bave indicated were all
used by, DBUAMBRE in calenlating the triangles in the French
survgy\:LBase du Systéme Métrique, Tome 11, page 7). In the
garlier’ cperations of the trigonometrical survey of Grout
Arifain and Ireland, the triangles were caleulated by the chord

\ \iethod ; but this has been for many years discontinued, and

in place of it LEGENDRK'S Theorcm has been universally
adopbed (dn Ascount of the Observations ... page 244). The
triangles in the Indian Survey are stated by Licut -Colonel
EVEREST t0 be computed on LmGuNDRES Theorem. (4%
Aecount of the Measurement ... page CLVIIL)

233. If the threc angles of a plane triangle be observed, the
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fact that their sum ought to be equal to two right angles
afferds a test of the accuracy with which the ohservations are
made. We shall proceed to shew how a test of the accuracy
of observations of the angles of a spherical triangle formed on
the Earth’s surface may be obtained by means of the spherical
BCESS. .
#

234, The avea of & spherical triongle formed on the Barth's suf=
face being known in square fee, i s required to establish o mle fr}r
computing the spherical excess in seconds.

Let » be the number of seconds in the spherlcztl‘excess,
¢ the number of sqnare feet in the area of the {rigugle, r the
number of feot in the radius of the Earth. Thén'if E be the
eircular measure of the spherical excess, \’ &

s=Er? P \%
and E= bl @ rexlma,tel
_ ~150.60.60 ‘?06265 P v
‘m:s 2
therefore 32“ 04963

Now by actual measuretent the mean length of a degree

on the Earths surfaceq& found to be 365155 feet ; thus
O g =365155.

With the, Valrue of v obtained from this cquation % is found,

by log: dl‘th\mJ caleulation, that
o%“ i logn=1logs— 9:326774

Henca % iz known when s is known,

ths formula i¢ called General Rov’s rule, as it was used by
“hitn in the trigonometrieal survey of Great Britain and
Ircland. M, DAVIES however, claims it for Mr. DArey.
(See HuTtoN's Course of Mathematics, by Davis, Vol. 1L
P 47)

235. In order to apply General RoY’s rule, we must know
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the area of the spherical triangle. Now the aven is not known
exacfly unless the elements of the spherical triangle are known
exactly ; but it is found that in such cases as occur in practice
an approximate value of the arca is snflicient. Suppose, for
example, that we use the area of the plane friungle considered ™\
in LegENDRE'S Theorem, instead of the area of the sphegionl
triangle lself ; then it appoars from Art. 218, that the extor/is

approximately denoted by the fraction *
Pr v

former area, and this fraction is less than 0001’ vif the sides
do not exceed 100 miles in length, Or w'i.\};, suppose we
want to estimate the influence of errors dn’the angles on the
caleulation of the area; lat the circalay !ﬁe&mtue of an crror be
A, so that instead of laﬁ sin C we ought fo nse lafsin(G+h};
the error then bhears to the aréaM apprommatel_} the ratio
expressed by Aot €. Now in, modem ohgervations A will not
exceed the cireular measurg’ oi’ a few seconds, so that, if Cbe
not very small, % cot C 13 practwally insensible. :

236, In geodetical ‘operations the largest triangles pras-
ticable for observgtions are so small compared with the earth’s
surface that, thelr spherical excess does not as » rule amount
to many seGomds. It requires a triangle containing about 76
square m}los to produce one second of excess, In a faw of the
vreategtwtrlancles of the Tnglish survey the excess is more
k{n\%o seconds ; the maximum reached was 64 seconds.

\ 237. The following example was selected by WOODHOUSE
* from the triangles of the English survey, and has been adopted
by other writers, Tho obscrved angles of a triangle being
respectively 42° % 327, 67° 55’ 397, 70° 1’ 48", the sum of
the errors mado in the observations is required, supposmg t,h‘e
side opposite to the angle A to be 274042 feet. The area 1s

calculated from the expression {;TS;LT‘“C nd by General
: Hln
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Rov's rule it is found that n=-23. Now the sum of the
observed angles is 180° 1", and as it ought to have been
180°4-0"23, it follows that the sum of the errors of the obser-
vations is 1723, This total error may be distributed among

the observed angles in such proportion as the opinion of the
ohserver may suggest; one way is to increase cach of the :
observed angles by onethird of 1723, and take the angles ¢\
thus corrected for the true angles. O

N

238. An investigation has beer made with respect~t§> the
form of a triangle, in which errors in the observatichs‘of the
angles will exercise the least influence on thodengths of
the sides, and although the reasoning is allowedyto be vague
it may bo deserving of the attention of the stadent. Suppese
the three angles of a triangle obscrvedi(and one side, as g,
known, it s required to find the form ‘efthe triangle in order
that the other sides may be least wffécted by errors in the
observations. The spherical excess of the triangle may be
supposed known with sufﬁcifsflﬁ} accuracy for practice, and
if the sum of the observedangles docs not exceed two right
angles by the proper spherical excess, let these angles be
altered by adding ¢ e(ﬁ:ime quantity to each, so as to male
their sum correctN\Let A, B, C be the angles thus furnished
by observation (ind altered if necessary; and let 84, 9B,
and 8¢ don t?e: %he respective errors of A, B, and G. Then
A+ OB 4 3&&, because by supposition the sum of A, B, and C
is corre{b;“ 'Considering the triangle as approximately plane,
the trus value of tho side ¢ is

A

~\J asin(C+80) . . _asin(C+3C)
N sin (A+84)° ’ sin (A - 6B - &C)

Now approximately
S §in {C +8C) =sin C+8Ccos G,
8in (A - 8B - 5C) =sin A— (8B + 6C) cos A
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Hence approximately

¢ 5in C _ -
A L +8CeotC} {1 (3B +3C) cot A}

€=z

_asinC

oA {1+08Becot A+8C(cot CcotA)};

N

sin{A +C) sin B . ¢\
= - approximatelp§ ™%

and cob G+ cot A= Sne  sm AT c

g W

Hence tho error of ¢ is approximately &N
@ 8in B #8in Ccos A A
- i - 6B, A"
sin® A sIn“A v \

Similarly the error of 5 is approxima-tgly
] -Si? CS L2 sin. BQ(i@)‘Sé
sin® A i A

Now it is impossible to assign‘eXactly the signs and magni-
tudes of the errors 88 and 39’,:150 that the reasoning must be
vague. It is obvious thaty make the error small, sin A must
not be small. And asthe sum of 84, 8B, and 8C is zero, two
of them must have{le same sign, and the third the opposite
sign; we may t}xﬁ?fore consider that it is more probable that
any two, as 85‘\@1& 8C, have different signs, than that they have
the same sigh,

If 8B, 4nd $C have different signs the errors of & and ¢ will
be lgssiwhen cos A is positive than when cosA is negative;
A therefore onght to be Tsss than a right angle. And if 8B

(@l 3C are probably not very different, B and ¢ should be
Slearly equal.  These conditions will be satizfied by a triangle
differing not much from an equilateral triangle.

If two angles only, A and B, be observed, we obtain the
same expressions as before for the errors in & and ¢; but we
have no reason for considering that SB and 8C are of different
signs rather than of the same sign. In this case, then, the

supposition that A is & right angle will probably make the
errors smallest,
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239. The preceding article is taken from the Treatise on
Trigonometry in the Encyclopaedia Matropolitana, 'The least
satisfactory part is that in which it is considered that 68 and
8C may be supposed nearly equal; for since 8A+8B+68C=0,
if we suppose 88 and 8¢ nearly cqual and of epposite signs,
we do in cfect suppose $A=0 nearly ; thus in observing three
angles, we supposc that in one observation a certain error ig',
made, in a second observation the same numerical GITORIE
made but with an opposite sign, and in the remaining ©Bser-

£ ™

vation no errov is made, A\

240. We have hitherto procceded on the supp}s?tion that
the Earth is a sphere ; it is however approximiabely a spheroid
of small eccentricity. For the small corpections which must
in consequenco be introduced into theealtulations we must
refer to the works named in Art 227/ One of the results
ohtained is that the error cansed by fegarding the Earth as a
sphere instead of a spheroid inbréﬁsea with the departure of
the triangle from ths well—cgndiiﬁoned ov equilateral form (4n
Aecount of the Observations “page 243). Under certain circum-
stanees the spherical aXecss is the same on a sphercid as on a
sphere { Figure of thel Barth in the Encyclopaedia Metropolitang,
pages 198 and 212&\ )

241 In ge@éétical operations it is sometimes required to
determing, €h# horizontal angle between two points, which are
2t a smalllangular distance from the horizon, the angle which
the abjects subtend being known, and also the angles of
elevhtion or deprossion. .

¢ Suppose OA and OB the directions in which the two points
\“re seen from 0 ; and let the angle AOB be observed. Tet OZ
bs the direction at right angles to the ohserver’s horizon;
describo » sphere round O as a centre, and let vertical planes
through OA and OB meet the horizon at OC and OD respec-

tively : then the angle COD is required,
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Let AOB=6, COD=0+2 AOC=}, BOD=£k; from the
triangle AZB

#—cos ZAcos ZB @ -sinhsink
cos AZB=GOS co c0sZB _ cos sir .

SinZASInZB  coshcosk )
and  cos AZB=cos COD =cos {# +x) ; thus O
cos 8 —sin hsink O\’
cos (f+ay="-———— A\
coshcosk O
Z
ok
&
This fomula{a.éxact-; by approximation we obtain
N\ N\ cos @ - Al
Y cosb—zsinfl=—"—_———"_;
therp{iérﬁ " 2sinf=hk— (A2 +4) cos 6, nearly,
QO Rk — (A2 + E2){cos? 16 - sin? 16)
d' = n. N ————
z&k * 2 sin 8
x..\‘ii' =3(h+ kP tan 30 - 1 (h — k)2 cot 30.
<> - This process, by which we find the angle COD from the

sngle AOB, is called reducing an angle to the horizon.



m\‘

\

) 3

oY . .
.Jand 8in{a + a) = sin 4 - cos @ &z, nearly,

CHAPTER XiV. S

£

ON SMALL VARTATIONS IN THE PARTS OF A

SPHERICAL TRIANGLE, &N
242, Tt is sometimes important to know whafﬁ.\aimount of
error will be introduced into one of the calmflated parts of a

triangle by reason of any small error wx}l'\bh,‘may exist in the
given parts. We shall here consider ar example.

243, A side and the opposite afgle of 2 spherical triangle
Temain constant: determine the! dohnexion between the small
variations of any other pairtof elements,

- Suppose € and ¢ to remgin constant.

{1y Required the coupexibn hetween the small variations of
the other sides. Wye}Suppose @ and & to denote the sides of
ono triangle whith“can be formed with G and ¢ as fixed
elements, and ¥t 8 and b+ 86 to denote the sides of another
such triangles, then we require the ratio of 6s to & when both
are extrg:\m:qu' small. We have

:"éé)s 6=¢08 & cos b + sin a gin b cos G,
3111\&\”(:’05 ¢=cos (@ + da)cosh + &b) + sin(a + Sx)sin (b + 3b)cos C;
‘also cos{a + éa) = cos ¢ — sin g 8, nearly,

with similar formulae for cos(b+8) and sin(d+8). (See
Plane Trigonometry, Chap. x11.) Thus

Co8¢=(cos g - sin @ Sa){cos b — ain b 8}
+ (sin & + cos a 9z) (sin & + cos b 6b) cos C,

)¢
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Hence by subtrastion, if we neglect the produoct 8u 35,
0 =3da(sina cos b ~ cos asin & cos C)
+8h(sinbeosa~cosbsinacosCl i ... (N
this gives the rutio of 82 to 3 in terms of 4, 5, ¢, We mag N
express the ratic more simply in terms of A and B by usg @é \
formulae of the type of (19), Art. 52; for we thus get ) \ N
St sin ¢ cos B+ 8 sin ccos A =0, W
or Stcos B+ 8beos A=0. .‘........,,.}:.’I".;......(?,)
(ii} Required the connexion between the suyb(lix;ariations of
the other angles. In this case we may, by niedns of the polar
triangle, deduce from the result just found ‘$Hiat
SAcos b+ 8B cos qi‘@.; ..................... (3)
this may also be found independeitlyhs before.
(iif) Required the cormexion”gcfﬁéeen the swall variations of
a side and the opposite an gledAya).
Here gin A ajrifc°= gin Gsing,
and sin (A -+ SAYsIN ¢ = sin C sin (¢ + da)
hence hy subtractigr(’
¢ 808 Asin ¢ 8A =sin C cos « &a,
and thereforg, \ BACOLA=8ac0ba. ... ciiiiiiriinereans {4
(iv) Required the connexion between the small variations of
a side agdy he adjacent angle (s, B).
\f\f.g‘ih; ve cobCsinB=cotesing —cosBoosa;
proceeding as hefore, we obtain
\ cot Cos BB =cob ¢ cos ¢ dz + cos B sin a 8z + cos o sin BEB 5
. "\ *therefore

\ ) {cot © cos B~ cos o sin B)3B = {cot £ cose +cos Bsina) §a;
thereforo _ 08 A 55 08 b S
fain G sln ¢ 2

therefore SBCos A= ~ 82 cot AN B, oovvreenranrimeens (5

This rosult may be ohtained more briefly by eliminating A
from the relations {3) and (4).
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244, When all the elements of g spherical triangle undergo -

slight changes, to find relations connecting these small
variations,

This is the most general problem ; we may derive from it
results suitable to any partienlar problem by substituting zero

for the variations of those elements which remain constant, £ b

Let us take the three equalities of the type O
o084 =cos b cos ¢+ sin baine cosA,...‘........(.\.fj(ﬁ)“
and treat them by the method exemplificd in the Previotis
article, allowing however for variation of all thg«?le‘ﬁents,
We thus get the following equations ; :
8 — ¢os C.8b — cos BSe=sin b sinG A,
- 605 C g 1 8b - cos Adc=sin cgin K8B, | ......... N
~cosB8e —cos ASH+ 8¢ = siingein B 6C.

Theso relations may be regarded ag\faiidamental ; from them
it is easy to derive by elimination’ a relation between the
variations of any four of the el,eiﬁ}bﬁts of the triangle,

245, Geomstrical method. The geometrical method of evaln-
ating small variations is{useful (particularly in astronomical
problems) and instr%@xe}; we shall illustrate 1t by an example,

\ A A

C
- The side ¢ of @ spherical triangle wndergoes & small variation 8,

&
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while the lengths of the other sides remain unaltered ; it is required
fo find the changes produced in the angles A, B, and C.

Let ABC be the triangle having the sides @, , ¢, and A'BC
the triangle on the same base BC, having the sides g, b, ¢+ 3.
Then the angles of the former triangle being A, B C, those o
the latter will be A+ 8A, B+ 8B, C+ 4G, so that ACA' aﬁe\ahd

ABA = -8B, . O
Draw the arc AN perpendicular to BA. In the@ight-angled

triangle ANB sin AN =sin AB sin ABN, M'\’;.'
and tan 8N = tan AB cos ABN N )
and consequently, when small quantm{s Jof the order of 38*
are neglected, AN= - ¢B 51r<:
BN =r, )

and therefore also NA' = BA CBN =5

In » similar manner, slnce CA = CA, it iz readily seen by
drawing the are through 6. perpendzcular to and bisecting AA,
that B = 8C sin b,
Thus the greatﬂrc}e arc AA’ is very approximately coincident
with the correspon ing arc of the small circle having centre ¢
and. radius d\\ and therofore the angles CAA" and CA'A are
approximately right angles. And 80, to & first approximation,

P\ NAA = A,

Tﬁﬁs"ﬁmngle ANA' has its sides so small that it may be

\gamded as a plane triangle, so thak
AN =NA' cot A, AA'=NA’cosecc A.

Substituting in these results the values of AN, Na', and AKX

obtained above, we get
&B= —8cuot A coseee,

and 8C= 3t cosec Acosech ;1
while, from analogy with 8B,

8A = —decot B cosec c. J
‘These agree with the results found by putting dz= 0, sb=0
in (7).

~
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EXAMPLES XV,

1, In a spherical triangle, if C and ¢ remain constaut while ¢ and b
receive the small increments §x and 88 respectively, shew that
Bt &b #in C

WL~ w?sin¥e) " 1 ~nlgno) 0, where n= sin ¢

2, If C end ¢ remain constant, and a smull change be made in &, p4 \
find the consequent changes in the other parts of the triangle. Fmd \ ”
also the change in the ares. G

3. Supposing A and ¢ to remain constant, prove the follbwmg
euations conueeting the small variations of pairs of the uther’e]ements
" 8in C 8 =sina 5B, Sbsin C= - §C tan a, é‘tztanC—(}Bsma,

dgtan C= - 5C tan o, 88 cos C=da, 3B cosge® - 4C.

4, Buppusing » and ¢ to remain constans, 'pra% the following
#quations connecting the small variations of Padpes stﬂm other elements:
8B tan C=4C tan B, dat gohC_ - $§Bsinag,
da=8Agincsnf, aAschorsC-—ﬁBsmA

5, Supposing B and © to remain, ‘I:Dﬁsta.nt prove the following
equations counecting the small varlatwns of paire of the other elements:
htane=35ctanb, " NG SAcotc=dbain A,
8A=ja smiasm({\ da sin B cos e = b sin A,

B, If A and C are , and & be increased by a small quantity,
shew that o will be ?%ge sed or diminished according as ¢ iF Jess of
greater than a quadgans.
N
O\ '
'®

N/

\\



CHAPTER XV. N o
. e\
ON THE CONNEXION OF FORMULAE [N PLANE AND
SPHERICAL TRIGONOMETRY. A\

246, The student must have perccivod,,,&éf many of the
results obtained in Spherical Trigonometry resemble others
with whichk he is familisr in Plane Trigonometry. This
resemblance hag been abundantly e ‘c.t}lpliﬁed in the preceding
pages, cspecially in Chapters #iIR " and 1x. We shall now
shew how we may deduce fof*muhe in Plane Trigonometry
from formmlae in Spheru,a,l“ Trigonometry ; and shall in
vestigate a fow more théptems in Spherical Geometry, which
are of interest principally on account of their connexion with
known results in Bline Geomstry.

247. Pro @y formula in Spherical Trigonometry invelving
the elements of a triangle, one of them heing a side, it is required
to dedutie the corresponding formula in Plane Trigonometry.*

L{tui, ,6’, 7 be the lengths of the sides of the triangle, ¥ the
\T&\(hus of the sphere, so that & - -'8 7 are the eircular measuret

rorr @ 5 7
of the sides of the triangle; expand the functions of - g
« By

which oceur in any proposed formula in powers of il

respectively ; then, if we suppose r to become mdeﬁnltel}’
great, the limiting form of the proposed formuls will be 3
relation in Plane Trigonometry.

* LAGRANGR,
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For example, in Art. 214, from the formuls

cos A_ L0884 cos beose
sinbsine
we deduce
Byt gl £ at + ;34 Ayt = 2% - 9y 202 2a2ﬁ9
28y 24 Byr
now suppose 7 to become infinite ; then ultimately
B4 2~ g
B

cosA=

cosA-

201

2%

and this is the expression for the cosine of the angle of a

m\

..“

plane triangle in terms of the sides.
" Again, in Art. 220, from the formula
- sinA_sing NG
sinB snb \2
ginA _« rx(ﬁa )
suB B . epr
oW suppose r to become infinite 3 tﬁén ultimately
sin & )
SnBL )8 ’

we deduce

that s, in o plane trlan@e the sides are as the sines of the

opposite angles,

7\

N

248. To find thé\equa;tlon to a small circle of the sphere.

P

NO

Let © he the pole of & small circle, 8 a fixed point on the
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sphere, 8X a fixed great circle of tho sphere. Let O8=q,
08X =3 ; then the position of O is determined by means of
these angular coordinates a and . ILet P he any point on
the circumference of the small circle, PS =8, PSX =, so that
8 and ¢ are the angular coordinates of P. Let OP=# Then
from the triangle OSP )
087 =008 a cos 8+ sinasin Feos (4 - F); .. \\(‘1)
this gives a relation between the angular coordina@eé. of any
point on the circumference of the circle. N
* If the cirele be a great cirele then r=}r ; "t{ué‘t-he equation
becomes Q N
0= cos a cos 0+ sin asin @ cos{d= B ceeerrrnennn(B)
It will be observed that, in the paffieular case in which the
sphere is the Farth, and § the nerthor south pole, the angular
coordinates here used are readilydexpressible in terms of the
latitude and longitude which sétwe to determine the positions of
places on the Earth's surfadey 6 is the complement of the latifudt
and ¢ is the longilude. 39

* 249, Equation. () of the preceding Article may be writben
thus: \\i ' cos r{cos? 16 + sin*16)
=003 «{6os*L6 - sin?}6) + 2 sin a sin 16 cos §fcos($ -~ B)
Dividgby cos?}6 and rearrange ; hence
ti?»I\g;}e("cos ¥+ cosa) - 2 tan L6 sin e cos{p — ) +cos 7 - cOBa= 0.

’\'§Let tan 16, and tan 8, denote the values of tan 30 found

& "from this quadratic equation; then

..\'.

\‘;

é g, - ¥ a—7
ta,nnlt,a,n_?=w— t,a,na_j,-— tan —z—-

2 2 cosr+cose 2
Thus the value of the product tan 36, tan 16, is independent
of ¢; this result corresponds to the well-known property of 8
cirele in Plane Geometry whick is demonstrated in Euclid 11k
86, (Cf Art. 170,) o
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250, To find the locus of the vertex of a spherical triangle
of given base and area. (Cf. Art. 153.)

Let AB be the given base (of length ¢), AC=#, BAG=4.
Sinco the area is given the spherical excess is known ; denote
it by E; then by Art. 132, (6) and (7),

' sin{¢ — E}=cot $ 6 cot L¢ sin 1E,

therefore 2 cot 4o sin € cos?}6 =gin #sin{¢ - JE), O

S

therefore ~\
cos § cot 4 sin 3E + sin & cos ($ — 4E+ ) = — cot iﬂ@m%E
Comparing this with eqnation (1) of Art. 2483 seo that

the required locus is a circle. If we call o AB.the angular co-
ordinates of its pole, we have (¢

1 gmr'le
ban & = e To oin JEL Sin 3"
B=3E- éir A\

It may be presumed fmm Symmetry that the pole of this
circle is in the great c:rble which bisects AB at right angles;
and this presumph%ls easﬂy verified. For the equation to
that great circle s,

=c08 Q&os (%17 — 16} + sin 8 sin {37 — $¢) cos($p - 7),
and the Vahﬁs f=aq, ¢ =3 satisfy this equation.

251\1'0 find the angular distance between the poles of the
mﬁwﬂbed and circumscribed ecireles of a triangle.

Let. P denote the pole of the inseribed circle, and @ the pole

\ of the circumscribed circle of a triangle ABC; then PAB=}A,
by Art. 119, and QAB=§ - C, by Art. 123; hence

cos PAQ=cos}(B-C);
and  eos'pQ — 08 PA c0s QA + sin PA sin QA cos (B~ C).
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Now, by Art. 73 (soe the figure of Art. 119),
¢c0s PA := 08 PE cos AE = cos v cos(s — &),

sinPE  sinr |

' SINPAS G PAE Tsin 4A° ~
thus \
€03 P@ =cos R ¢0s r cos(s - a) + sin Rsin cos (B - C)coset }5
Therefore, by Art. 63, ;"\

cos PQ =cos R €08 ¥ 6o (s ~ g} + sin R sin r gin l(b ic)gosec i,
therefore

\\'
cos PG TS 1
—————=cotr eos{s — &) + tan B sind\(F% c)eosec ia.
cogs ReEny
. &in § 2 &in }a\ln ‘b gin e
Now eobr=—o", tanR=-——%% )
- NS w
therefore Y
cosP@ 1 . o\ ¢ ] . .
-=fainscos(emt) + 2 sin L (D + ¢)sin 2bsinde
GOSHS]DT ﬂr{ VE‘; X )+ ,d( + ) F % }

1, . o\ .
= 2—(&11} &+ sin b + sin¢).

g N
Hence ( cos PQ\) -1= %2(5111 #+ginb+sine -1

s\@n"r

A\ =(cotr+tan R)? (by Art. 124);
thcref"qré'} ) ¢08°PQ = cos®R sinr + cos™(R - 7),
and'\'"" s12PQ = sin¥(R - r) — cos?R sin’r

The limiting form of this equality, when the triangle s
plane, is c]early 3
g PQ2=(R—1‘)?—'?’2,
=R®- 2Ry,
a well known raesult.

252. 'To find the angular distance between the pole of
the circumsecribed circle and 'I;he pole of one of the eseribed
circles of a triangle,

Let @ denote the pole of the circumscribed circle, and @
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the polo of the escribed circle opposite to the angle A, Then
it may be shewn that QBQ, = 4r 4 1(C - A), and
c08 QR = ¢03 R cos r;co8 (8~ ¢) — sin Rsinrsin §(C — A) sec 1B
= ¢0s R ¢0s 17008 (8 — ¢} — 8in R sin #,8in § (c— &) cosec 34,
Thorefore
605 Q@

o N2
——= = ot r;co8({s ~ ¢} — tan Rsin §{c - &) cosec §5 ; \)
sin 7 cos R O

by redncing as in the preceding Article, the rlghtr]mnd

momber of the last equatmn becomes K7,
W\"

%(sinb+sinc—sina,);

a\./
hence (—C-‘JS. e, )2 - L~ (tan R - cotry)", ¢ (iri. 124);

cos R sin 7y P
thercforo ¢0s’QQ, = cos’R sin%‘ +’c0§5( R+7)
and sin®QQ, = sin¥(R -|~r1)- cos’R sinry,
For & plane triangle O8N N
QQ 1T(R +'."1)2 2.
.\
\‘EXAMPLES XVL

- S-A
1, Frem the foz:mula, sin —\/ 1 smBsi cz?nSBc::sIEC ]} deduce the ex:

afsin BsinC hen
bression for ‘bl{e ‘area of a plane triangle, namely — - —5—, whe

the radv\”} the gphere is indefinitely incransed.
2, 1% triangles ABC, afe, spherical or plane, equal in all respeets,
dlﬂfemhghtly in position : shew that
~\./ cos ABE eos BCe cos CAa + cos ACc cos CBB cos BAx=0.

\/ 3. Deduce formulae in Plane Trigonometry from NAPIER'S analogles.

4 Deduce formnlae in Plane Trigonometry from DeLAMBRE'S
analogies,

5 From the formula cos$ccos3(A+B)=ain3Ceos}{a+d) dec%uca
the area of plane triangle in terms of the sides and one of the angles



206 SFHERICAL TRIGONOMETRY.

. 6, ‘What result is obtained from Example VI, 7, by supporing the
rading of the sphere infinite ?

7. If one angle of a spherical triangle remains censtant while the
adjacent sides are fcressed, shew that the ares and the sum of the
angles are inereased.

8. If the arcs bisecting two angles of a splierical trinungle a.nth»er
minated at the opposite sides are equal, the bisected angles "\NU.\hc
equal provided their sum be less than 180° "\\

[Let BOD and COE denote these two arcs which are gnen equal,
If the angles B and C are not equal suppose B the gr;,m:er‘ Then CD
is greafer than BE by Art. 67. And as the angle ({Q is greater than
the angle OCB, therefore OC is greater than @By therefore CD is
greater than OE. Hence the angle QDC is greater than the angle
OEB, by Example 7. Then construet a, erical triangle BCF on
the other side of BC, squal to CBE. Sl%& Ahe angle ODG i greatel‘
thau the angle OEB, the angle FDG g grea.ter than the angle DFC;
therefore CD is less than CF, so tha.t; CD is less than BE. Sec the
corresponding problem in Plane Geometly in the Appendiz to Buclid,

page 317.] ol
N\
2\
. a:;\
K
PN\
9\l



CHAPTER XVL

POLYHEDRONS. W\

263. A polyhedron is a solid bounded by any mm:ber of
Plane rectilineal figures which are called ‘its faces \A poly-
bedron is said to be regulor when its faces afe’similar and
equal regular polygons, and its selid anglwe}mqua.l to one
snother, \‘

254, If 8 le the number of solidl, angi’es in any polyhedron,
F the mumber of ifs faces, E tk*s nnmber of s edges, then
8+F=E+2 N

Take any point within ‘the polyhedron as centre, and
describe a sphere of ragiud r, and draw straight lines from
the: centre to each of¢ the angular points of the polykedron ;
let the points at \“hi‘oh theso straight lines meet the surface
of the sphero be’ Sjoined by arcs of great circles, so that the
surface of the (gphere is divided into as many polygons as the
poly hedmps}gas faces.

Let, s(8érote tho sum of the angles of any one of theso
POIY@}B m the number of its sides; then the area of the
POlYgOn is 72 {5 — (m — 2)7} by Art. 129. The sum of the areas
(OB aN the polygons is the surface of the sphere, that is, 42
./ Hence, since the number of the polygons is F, we obtain
. dr=Z¢ — wZm + 2Fm

Now Zs denotes the sum of all the angles of the polygons,
and s thorefore equal to 2r x the number of solid angles, that

&
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is, to 276 ; and Zm is equal to the number of all the sides of
all the polygons, that is, to 2E, since every edge gives rise to

an arc which is common to two polygons,

therefors

47 =278 — 2rE+ 2Fm;
S+F=E+2,

Therefore

266, There can be only five regular polyhedrons.
Let m be the number of sides in each face of a reguls,r poly-
hedron, » the number of plane angles in each slid” angle;
then the entire number of planc angles is expree%cd by mF, or

by 28, or by 2E; thus

mF-ﬂS:EE, and §4 F =B

from these equations we obtain A

S=

4m

Dmn { ¥

L

4n

T . E=
2 (m+'n) —n

2 {m + ?1) i’

N

o 2
A

g {m -+ n) — mn

These expressions must be posrtwe integers, wo must there
(m+ %) greater ﬁha,n mn ; therefore

fore have 2

l-}— must be greater than ,1)

&

but # cannot be legs than 3, so that 1 (:‘mnot e greater than

1 1
3 and therefs@s ~must be greater tha,u

6)

: and as m must be

an 1nl;eger And cannot be less than 3, the only admissible

values *o‘f “m are 3, 4, 5,

It will be found on trial thab the

onl \alues of m and » which satisfy all the nccessary com
{tibns are the following : each regular polyhedron derives its
(ame from the number of its plane faces.

’o

n ] E F
3 2 | 4 | @ 4
4 3 12 6 Hexahedron or Cube.
3 4 12 5 Qctahedron.
5 3 20 30 12 | Dodecahedron.
3 5 12 30 20 | Tcosahedron.

Name of Regular Polyhedron.

Tetrahedron or regular Pyramid.
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It will 1. seen that the demonstration establishes some-
thing more than tho enunciation states; for it is not assumed
that the faces are equilateral and cquiangular and all equal.
It is in fact demonstrated that, there cannof be more than five
solids each of which has all ifs faces with the same rumber of sides,

and_oll its solid angles formed with the swme number of plane
angles, .

\/

256, The sum of all the plane angles which form the solid ajias
of any polyhedron is 2(S - 2. \\

For if m denote the number of sides in any face of Blie poly-
bedron, the sum of the interior angles of that faeg\is (m—2)r
by Fuelid I, 32, Cor. 1. Hence the sum ofyall the interior
angles of all the fuces is =(m — 2)7, that igr)nifr - 2Fr, that is
2(E-F)r, that is 2(8 - 2)w.

257, To find the inclination of {wzi"iafljacem Jases of @ regular
wolyhedron, &N

(Bl AB be tho edge common to the two adjacent faces, C
14 D the centres of the faces ; bisect AB ab E, and join CE
and DE; GE and DE will be perpendicular to AB, and the
angle CED is the angle of inclination of the two adjacent faces;
@ shall denote it by 7. Tn the plane containing CE and DE
draw Go and DO at right, angles to CE and DE respectively,
“d meoting at ©; sbout O as centre describe a sphere
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neeting OA, OC, OF at 4, ¢, ¢ respectively, so that cae forms &
spherical triangle. Since AB is perpendicular to CE and DE,
it ig perpendicular to the plane GED, thercfore the plane AOB
which contains AB is perpendicular to the plans CED; hence
the angle ces of the spherical triangle is a right angle. Lefm
ba the number of sides in each face of the polyhedrom. {@.the
uumber of the plane angles which form each gg{icl’“angle.

v 0w N
Then the angle «ce=ACE = = 0 the‘ :;;ug%e cae is half
one of the # oqual angles formed on the sp\héfe round ¢, that
:) { o”“.
is, cae= 5%=% From the right-anglédriangle eae

¥

A\,
COS e = C03 r:s?’s\m et

. T P AR
that is, 08 - = oS — - Jsin— ;
oo WP 4 i

ST

A0 cos—

Y n

therefora ST - = —

~ 2 sin -

»\ —

W

258. 7 0}5«}5 the radii of the inscribed and cireumseribed spheres
of @ reguly polyhedron, )
Lat $he edge AB=a, let OC =7 and QA=R, so that 7 i3 the
rafibs of the inscribed sphere, and R is the radius of the
(gircumseribed sphere. Then
N

#

.'\

GE = AE cot AGE — 2 cot =,
...\‘; & i)
~O i o w4,
?=0EbanCE0==CEtan§=§cotﬁ—%tan2,
T T,
also ‘r=Rwsa06=Rcotecacoteac=Rcotﬁco’olﬁ:

therefore  Re=rtan . tan ™ — % tar © tam .
anmt-ann 2ta.n2ta,n
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259. To find the surfuce and volume of o vegular polyhedron.

2
The area of onc face of the polyhedron is iijamt %, and

2
therefore the surface of the polyhedron is m4ﬂcot e

Also the volume of the pyramid which has one face of the

N

LT omeE A
polyhedron for hase and O for vertex i 5. - oot and { )

3774
: o &
therefore the volume of the po]yhedron 15 m:’; ot % o '~. N

260. To find the volume of a parallelepiped in tc,rms'qf\sfs edges
and thetr inclinations to one another.

Let the edges bé\m_a OB=8 0OC=¢; let the inclinations
be BOC =4, COA%.8, AOB=y. Draw CE perpendlcular to the
plane ACB m(,cimo- it at E. Describe a sphere with O as
cantre, meo\mg OA, OB, OC, OE at g, b, ¢, ¢ respectively.

The rolvme of the parallelepiped is equal to the product of
its a) ¢ and  altitude = ab sin y.CE=abesinysincOe. The
Splietical trian gle cae is right-angled at ¢; thus
\« ) skt ¢e = sin ez 8in ege = sin ﬁ gin cob,

\ ) nd from the spherical triangle ¢z (by Art. 45)
(1 — cos?a - cos? B — cos?y + 2 cos a cos 3 cos 7)
sin B sin y
therefore the volume of the parallelepiped
=abe, /(1 — cos?a — cos? 3 — cos?y + 2 cos a cos B cos ¥).

Eift egh =
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261, To find the disgonal of & parallelepiped in terms of the
three edges which it meets and their inclinations to one another,

Let the edges be OA =g, OB=25, OC=c; let the inclinations
be BOG=qa, COA=P, ADB=y. Let OD be tho diagonal re-
quired, and let OE be the diagonal of the fuce GAB. Then

OD?=0E?+ED® + 20E.ED cos COE L\
=%+ 8%+ 20k cos y + ¢? + 20. OE cos CQEy

Deseribe a sphere with O as centre meeting 0408, OC, OE

at a, b, ¢, € vespectively ; then, by Art. 143, (11\): ‘
AV

08 COE;{&Q,M _ cosch sin ae 4 cos eg 8In be

T sinab
O eos o sin ACE + cos 3 sin BOE
W\ = : nbYE,
7 sin y
therefore
o, 2%.0E, - OB
QD<= a? 4. 5% + ¢+ 2ab cosy+ ———(cosasinACE + cos Bsin BOE);
.%w sin y

and  OEsinAOE=bdsiny, OEsinBOE=—asiny,

. (\" therefore OD?=a24 824 ¢? 4 2 cos o + 2eacos ff + 2abcos ¥

\‘:

262. To find the velume of a fefrahedron.

A tetrahedron is onesixth of a parallelepiped which has the
same altitude and its base double that of the tetrahedrot:
thus if the edges and their inclinations are given we can take
one-sixth of the expression for the volume in Art. 260 TFIS
volume of a tetrahedron may also be expressed in terms of 168
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six edges; for in the figure of "Art. 260 let BC=a, CA=b,
AB=¢c, OA=¢, OB=1, OC=¢ ; then C
B2ye2 a2 LR, C LR ]

008 7= —— cos,8=W, CO8 Yy =——g
if these values are substituted for cosa, cos 8, and cosy in the
expression obtained in Art. 260, and the factor abe replaced
by &b’ in accordance with the altered notation, the volume oft N
the tetrahedron will he -'expressed.in terms of its six edges, O

The following result will be obtained, in which V denates
the volume of the tetrahedron, . :

144 V2= — 2% ?)
Q2 (B4 ¢ ) B (e% 4 02 — %) + o RRaT 4 19 = o)
A Y DS IR R
— (% g (¥~ B, RS
 Thus for a regular tetrahedron we hawe 44 V2 =2as.
© 263. If the vertex of a tetrahédron be supposed to ba
sitnated af any point in the pIEg'ne of its base, the volume
vanishes ; honce, if we equatie\td zcro the expression on the
right-hand side of the equatiot just given, we obtain a relation
which must hold among the six straight lines which join four
Points taken arbitvalyin a plane.

Or we may adop&ARNOT’S method, in which this relation is
established indepefidently, and the expression for the volume
of & tetrahedrdr is deduced from it; this we shall now shew,
and we shall add some other investigations which are also
given'b. Larxor..

264" To find the relation holding among the lenglhs of the siz

AGiGhi Lines which join four poinés taken arbitrarily in o plane.
“\“Let A, B G, D be the four points, Let BG=a, CA=J,
v AB=¢; also let DA=4, DB=F, DC={.

If D falls within the trisngle ABC, the sum of the angles
BDG, ¢DA, ADB is equal to four right angles; these angles
‘being denoted by 6, ¢, y, and their sum by 2o, it follows

that sin o= Q.
La.m, ): §
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- If D falls without the triangle ABC, one of the three angles
at D is equal to the sum of the other two, that is to say, one
of the quantities o0 — 8, o — ¢, o — 1, vanishes.
Therefore, whether D be ingide or outside,
0 =4sinesin(o — O)sin(o - $)sin{e - ¥}
=1 — c08%0 — cos?¢ — cosyp + 2 cos t cos peos . .
Now cos 0 = (b2 +¢2 — a?)/2b¢’, and the othor cosinesghag be
expressed in a similar manner ; substitute these values 'in the
above result, and we obbain the required relation;yhich after
reduction may be exhibited thus, AD
" m\\
0= —a?h?%? )
+ 620 (B2 4 ¢ - a?) 4 YI2(c? + a® — B R (@ + i)
—a¥(a'? - H)(0® - ¢2) - BB (7 - 2%
= (- a?) (e - B, )
065. To express the volume, ofa tetrahodron in lerms of the
lengths of s six edges. \ \\ :
Let g, B, ¢ be the lengths of the sides of a triangle ABC
forming one face of the tetrahedron, which we may call its
base ; let o, &, crhé the lengths of the suraight lines which
join A, B, C péspectively to the vertex of the tetrabedron
Let p be théJength of the perpendicular from the vertex o1
the baso § j:hen the lengths of the straicht lines drawn from
the feof/of the perpendicular to A, B C respectively aré
JEESPD, JB7 -7, J(? - p%. Hence the rolation given in
\i}z 264 will hold if we pus /(o — 5% instead of @', J(#*—F)
instead of ¥, and /(¢Z-p®) instead of ¢. We shall thus

Q

% obtain

PR(2V2 + 2R + ST — gt~ B — ¥ = — B!
+ QB+ - 07 B - B + 0@+ B =)
—a{@? — B (a2 - ¢ — BT - (B2 - o)
— (2 - (e B,
The eoefficient of p? in this equation is sixteen times the
square of the area of the triangle ABC; so that the left-hand
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member is 144v2 where V denctes the volume of the tetra-
bedron. Hence the required expression is obtained.

266, To find the velation holding among the six ares of greal
circles which join four points faken arbitrarily on the surface of a
sphere.  {Compare Art. 3562, below.)

Let A, B, C, D be the four points. Let BC=a, CA=S, O\
AB=7v; let DA=qa/, DB=f3, DC=7. a\

Asin Art. 264 we have by
1=20s?BDC + cos?CDA + c0s2ADB — 2 cos BDGC ¢os CDA cod ADB.
cos a—cos ' cosy 4
T sinFsiny
may be expressed in a similar manner ; substittt® these values
in the above result, and we obtain the requitéd relation, which
after reduction may be exhihited thus,) O

1=cos? a + cos? 8+ cos? y + cos? &l cos? 5 + cos?y’
— cos? @ cos? o — cos? B cos?3 cos?y cos?y’
- 2 (cos a cos B cos y + codiweos B cosy'
+ cos 3 cos y'cos o -+ 60§y cos a’ cos B)
+2{cos 8 cos vy cosBhcos ¥ + cos y cos a.cos y’ oz’
+cos a cos 3 coseicos 87

267. To find fhe\\adms of the sphere circumseribing o fetra-
hedron, P4
Denote the) 6dges of the tetrahedron as in Art. 265. Let
the Sphe(é,\)E supposed to be circumscribed about the tetra-
hedroh\and draw on the sphere the six ares of great circles
jeining’ the angular points of the tetrahedron. Then the
Aelation given in Art. 266 holds among the cosines of these
™\ Wix arcs,
V" Let  denote the radius of the sphere. Then

a8
Now cosBDG= , and the aepher cosines

. a2 a?
cosa=1 —2sm9§=1—2(9—) =1—§,;§:

&

and the other cosines may be expressed in a similar manner.
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Substitute these values in the result of Art. 266, and we
obtain, after reduction, with the aid of Art. 265,

4 x 144 V32 :
= 96222 + 2c%a2a? + 2P - gt — B - oE .
The right-hand member may also be put into factors, as we seg
by recollecting the mode in which the expression for the(azea
of a triangle is put into factors. Let ag’ +8" +¢¢'= 20: ‘wihett
36 Vit =0 (o —aa) (o — b)Y (o - ). NN

EXAMPLES XVIL -\

1, If § denote the inclination of two adjacent\hesd of a regular poly-
hedron, shew that eos{=} in the tetrahedrom, 50 in the cube, = ~%in
the octahedron, = - },/5 in the dodecahedrbg}and = —~1./5 in the icosa-
hedron. ~\

2. With the notation of Art. 257, £hew that the radins of the sphere
which tonches one face of a regufqr ‘polyhedron and all the adjacent

- u -~ -
faces produced is 1acot o cof F

3. A aphere touches onejf:‘;,ce of a regular tetrahedren and the other
three faces produced : find its radins.

4, If zandb ar;wtbe vadii of the spheres inscribed in and deseribed
about a regula.\téémhedron, shew that b=3e,

B. If @ fahe Padins of a sphere inscribed in a regular tetrahedrot,
and R thesradius of the sphere which tonches the edges, shew that
R AN

6-~:I£ﬁ is the radius of a sphere inseribed in & regular tetrahedrol,
'ﬁd?ﬂ’ the radius of the sphere which touches oue face and the others

{wroduced, shew that R’ =2a.
3" 7. If a cube and an octahedron be described about a given SPhemé
PR "y " the sphere described sbout these polyhedvons will be the same; an
\ Yy conversely.
8. ¥ a dodeeahedron and an icosahedron be described about @ g“'e’f
aphere, the sphere described about these polyhedrons will be the same;
and conversely.

9. A regular tetrahedron and a regular octahedron are insoribed i

the same sphere: compare the radii of the spheres which cas be in-
seribed in the two solida.
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10. The sum of the squares of the four diagonals of a perallelepiped
is equal o four times the sam of the squares of the edges, ’

11, I with all the angular points of any parallelepiped 23 centres
equal spheres be described, the sum of the tutercepted portions of the
parallelepiped will Le equal in volume to one of the spheres.

12, A regnlar octahedron is inseribed in a cube o that the corners
of the octahedron are ab the centres of the faces of the cube : ghew thab A
the volume of the cube is six times thet of the octahedron, LW

13. It is not possible to fill any given space with a number of regl.:ﬂa}'
polyhedrons of the same kind, except cubes ; but this may be fiﬂﬁ@ by
means of tetrahedrons and octahedrons which have equal facespby using

7

twice as many of the former as of the latter. Qe

14 A spherical triangle is formed on the surfasg\piva sphere of
radius p; its angnlar points are joined, forming t}QE,u pyramid with
the straight lines joining them with the centre ;/sheW that the volume
of the pyramid is "~ N
¥ AJ(tan » ban 7y ban r Sangy),
where 7, vy, 7y, 7, are the radii of the ing,cﬁbéd and escribed circles of
the triangle, & ’ N

15. The angular points of a regu]fzg"‘tetra.hedmn inscribed in & sphere
of rading r being taken as pole&,ffé»ur egnal small circles of the spheve
are deseribed, so that each virelo tonches the other three. Shew that

. 1
the area of the surface b?m?ded by each cirele iz 2”42(1 --v—"')

16. If O be any pc& within a spherical triangle ABC, the preduct
of the sines of any two sides and the sine of the jncluded angle
=sin AQ sin BOlgin CO{cot AQ sin BOC
N\ + cot BO sin COA + cot CO sin AOB}.
$
N\

S



CHAPTER XVIL &

+ W
ARCS DRAWN TO FIXED POINTS ON TIIE §UBFACE
OF A SPHERE. 0
A\

968, Tn the prosent Chapter we shall Smbnatrate various
propositions relating to the arcs drawny Arom any point on the
surface of a sphere to certain fixed points on the surface.

269. ABC is a spherical trimgé;ié having all its sides quad-
rants, and therefore all its %néié% right angles; T is any point
on the surface of the sphgx‘e‘& *to shew that

cos? TA ‘-E:‘cos2 TB+costTC=1.

(N
{ M\
A
Ve \\ ..)
» ¥
»O
~0
’\\. 7
& N
o Ys '0
,.\z"\f'
Ne/”
/ 4 4

By Art. 42 we have
c0s TA=cos AB cos TB + sin ABsin TB cos TBA
=&in TB cos TBA.



$270] THE TRIRECTANGULAR TRIANGLE. 219

Similarly 08 TC = sin TB.cos TBG = sin TR sin TBA.
Square and add ; thus
eos? TA + 0052 TC—=sin2 TB=1 — cos? TR 3
therefore cos? TA+cos? TR+ cos? TC =1,

N
4

270. ABC ie a spherical triangle having all its sides quad- A
rants, and therefore all its angles right angles; T and U ared \)
any points on the surface of the sphere : to shew that ()

€08 TU = 08 TA c0s UA + cos TB cos UB +£0s TC cos Y€,

l"

4 - ps

By Art. 42 we have\.)
€08 TU =cos'TA cos UA + sin TA sin UA cos TAU ;

now #6065 TAU = cos (BAU — BAT)
O = cos BAU cos BAT + sin BAU sin BAT
“\x\ ” = cos BAU cos BAT + cos CAU cos CAT ;
therefiafy™ cos TU = cos TA cos UA
. :‘;’. sin TA sin UA (cos BAU cos BAT 4 cos CAU cos CAT) ;
éﬁd' cos TB = sin TA c0s BAT,

€08 UB = gin UA €08 BAU,
¢os TC =sin TA coa CAT,

cos UG = gin UA cos CAU ;
therefore -

€08 TU = ¢os TA cos UA -+ ¢os TB cos UB 4 cos TC cos UC.
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. 971. We leave to the student the axercise of shewing that

the formulae of the two preceding Articles are perfectly
general for. all positions of T and U, outside or inside the
triangle ABG : the demonstrations will remain essentially the
same for all modifications of the diagrams, The formulée
are’ of Gonstant application in Analytical (reometry of thitee
dimensions, and are demonstrated in works on that gubject’;
we have given them here as they may be of &etvice in
Spherical Trigonometry, and will in fact now, e Jused in
obtaining some important results. R4

972, Let there he any number of fixed ‘goints on the surface
of a sphere; denote them by Hv ~H,z;': we Lot T be any
point on the surface of the sphcre.(’tw.é shall now investigate
an expression for the sum of the cosines of the ares which
join T with the fixed points, 33 E

Denote the sum by = ;_,.gq-it}:iat

%= cos THy+ cos THy 4008 TH; + ...

Take on the surface of the sphere a fixed spherical triangle
ABC, having allits)sides quadrants, and therefore all its angles
right angles, N

Let A, v be the cosines of the arcs which join T with
A, B, O\fespectively ; let I, m,, =, be the cosines of the arcs
whi\e&j’oin H, with A, B, C respectively; and let a similar

"{Q‘o@tio.n_be used with respect 1o Hy, Ha,...
Then, by Art. 270, .
Sl dmgptng + LA+ mogp Y+
—PA+Qp+Ry;
where P stands for I, + 7, + 7, + ..., with corresponding meanings
for @ and R.

973. It will be seen that P is the value which X takes when
T coincides with A, that @ is the value which T takes when T
coincides with B, and that R is the value which Z takes when
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T coincides with C. Hence the result expresses the general
value of ¥ in terms of the cosines of the arcs which join T to
the fixed points A, B, C, and the particular values of T which
correspond to these three points.

N

274, We shall now transform the result of Art. 272,
Let G=/(P+ Q2 4 RY); A
and lot o, 3, y be three arcs determined by the equations. >

<

cos::=g, cos,8=%‘ cbs-y=-g; m\:
then Z=G(Lcos at poos B4 vcos PN

Since cos?a + 0os?8+ costy =1, it is oh¥igus that there will
be some point on the surface of tha ’spjséfe, such that e, 8, ¥
are the arcs which join it to A, B)'C respectively; dencte
this point by U; then by Art. 248, ) :

€08 TU = A cosdRpcos B+ veosy ;
and finally N
3—@eos TU. _

Thus, whatever gma:y be the pesition of T, the sum of the
- cosinos of the Arés “Wwhich join T to the fixed points varies
as the cosine of, the single are which joins T to a certain fixed
point Y, " _ )

Wo miglit take G either positive or negative; it will be
convenidut to suppose it positive.

o\ 215, A sphere is described about a regular. polyhedron ;

40w any poing on tho surface of the sphere arcs are drawn to

w\‘; + the solid angles of the polyhedron: to shew that the sum of
V' the cosines of these ares is zero. .

From the preceding Article we se. thab if G is not 2610
there is one position of T which gives to'Z its greatest positive
value, namely, when T coincides with U. But by the symmetry
of & regular polyhédrc-:: there must always be more than one
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positions of T which give the same value to 2. For instance,
if we take a regular tetrahedron, as there aro four faces there
will at least be three other positions of T symmetrical with any
assigned position. _ )
Hence G must be zero; and thus the sum of the cosines of the
ares which join T to the solid angles of the regular polyhedrgins
zero for all positions of T. N\

978, Since G=0, it follows that P, @, R must egeﬁ;]}e zero;
these indeed are particular cases of the gen@fal result of
Art. 275, See Art. 273, )

977. The result obtained in Art. 275 miy be shewn to hold
also in some other cases. Suppose, fot/Instance, that a rect-
angular parallelepiped is inscribed 40 a spheve ; then the sum
of the cosines of the arcs drawn froln any point on the surface
of the sphere to the solid anglés of the parallelepiped is Z6T0:
For here it is obvions- t]}s,t: there must always be at least one
other position of T symmmétrical with any assigned position.
Henee, by the a,rgur{rént of Art. 275, we mmust have G=0.

978. Let thers o any number of fixed points on the surface
of 2 spherc denote them by H,, H,, H,, ... Lot T be any point
on the wirfate of the sphere. We shall now investigate a
remarkablo expression for the sum of the squares of the cosines
of thelarcs which join T with the fixed points.

."§Den0t.e the sum by 2; so that
RN\ = cos?TH, +cos?TH, + cos®THy +...-

\\;n'

Take on the surface of the sphero a fixed spherical triangle
ABC, having all its sides quadrants, and therefore all its angles
right angles.

Let A, p, » be the cosines of the arcs which join T with
A, B, € respectively ; let %, my, n, be the cosines of the ares
which join' H, with A, B, G respectively; and let 2 similar
niotation be used with respect to Hy, Hgyeov :
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Then, by Art, 270,
S= (At mypt 02 (A mge gy L
Expand each square, and rearrange the terms : thus
Z=PAT+ Qu? + Rv® + 2ppv 4 2gvA + 2rip,
where P stands for 2+ L2+ 12+ ...,
aud p stands for mn, + myn, +mgng + O\
with sorresponding meanings for @ and ¢, and for R and r™

We shall shew that there is some position of the trlangle
ABC for which g, ¢, and r will vanish.

Tor let the triangle ABC be shifted to a new posmmn A'BC
and let X', g/, v be the cosines of the ares TA,8, TC'; then
we have A'= A cos AA'+ 1 cos BA' + v cog GH,
with similar expressions for & and v ; t]}qsr A, @, v are linear
functions of A, u, v, and are moreaven such that

Aipptpyi=1= )L2+# 4

Now, by a well known thep‘rém of Algebra* it is always
possible to find.a linear Substltutlon by which the two quad-
ratic forms ¥ and A2+ #2£7* shall be reduced simultaneously
to the forms E{ﬁl’2+@p2+$vm

+p2+v2—h’g+p'2+v

The constanfy %‘ @, 3 are the roots of the cubic equation
, P—x ¢

N r, Q- Pp |= 0,
\ R-=z
' % P
anth ethty among the roots P, @, B does not affect the
rogull

s>\ Therefore we see that thers must be some position of the
“\MAriangle ABC, such that for every position of T
\ T=PA 4 Qut + FA

*Capcny (lS"‘))TTase when the cubic has equal roots is ‘dealt
With Ly Wererstrass, Berliner Monaisberichte, 1858, A simple discus-
sion of the theorem is given by Mr. T. J. I"A. BrosrwicH in the Quarierly
Journal of Maihemantics, 1901,
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979, The remarks of Art. 273 are applicable to the result
just obtained.

280. Of the three constants ), @, I determined in Art
978, let P bo not less than the other two, and let F be noff
greater than the other two. Then § is readily seen to be, the
greatest value which 2 can receive, and I the least valdes’)

Far, since by Art. 269, . O

)\.2+P‘2+V2=1, (":’g
S=P - - )+ QP+ B O
=P-Q-Q)e-(B-BN
and S N4 Qi+ B (1 N
=5 +(B-B) Q-

Now, by supposition, none of vhe’ quantities - 4, P -~
@ - 3, can be negative; hepde. = cannot be greater than P
or less than . o

981, A sphere is Aeséribed about a regular polyhedron;
from any point on/the surface of the sphere arcs are drawn 10
the solid angles iﬁ?f%he polyhedron ; it is required to find the
gum of the sq\&es of the cosines of thesc ares.

With 1;]13: notation of Art. 278 we have

\:> E={3A2+QQJLL2+3:RV2.
e shall shew that in the present case ¥, @, and T mush

,Qalb' te equal. For, if they are not, one of them must he greater

\\than each of the others, or one of them must be less than each

of the others. .
If possible let the former be the case; suppose that B 18
greater than @), and greater than . Then the equality
Z=P-B-Qt - P -B)A
shews that 2 is always less than 0 except when p=0 and
v=0: that is 2 is always less than P except when T 1s ab A or
at the point of the surface which is diametrically opposite to A
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But by the symmetry of a regular polyhedron there must

always be wmore than fwo positions of T which give the same

value to 2 For instance if we take a regular tetrahedron, as

there are four faces there will be at least fhree other Positions

of T symmetrical with any assigned position. Hence ¥ cannot

be greater than @) and greater than B. .
In the same way we can shew that one of the three #, QN0

and B, cannot be less than each of the others. O
Therefore P= Q=3 ; and therefore by Art. 269 fop-etery

position of T we have Z—1. >

Sincs =@ =1, each of them 13+ Q+B"

1 N
=3{;’-12+m19+n1?+322+m22+3§2%»¢;\.:.}
R4S

=§, by Art. 264,

where S is the number of the gtfid angles of the regular
polyhedron, o '

Thus the sum of the squared ef the cosines of the ares which
foin any point on the surfaggaf the sphere to the solid angles of the

regqular polyhedron 4s ong-third of the number of the solid angles.

282. Since P =,®\> ¥, in the preceding Article, it will follow
that, when the fixed points of Art, 278 are the sclid angles of

8 regular pquhearon, then for -any position of the spherical

triangle ABB we shall have p=0, g=0, r=0.

FOT‘.\@J}ﬁ;g any position for the spherical triangle ABC, we
haye! Z=PA3 4+ Qu2 + Rv? + 2ppw + 2gvd + 2rhu;

;’E'Tiséﬁ 2t A we have u=0 and v=0, so that P is then the value
of 2; similarly @ and R are the values of 2 at B and C respec-
Yitively. But by Art, 281 we have the same value for £ what-

ever be the position of T ; thus S=P=Q=R, and 50

: P=P{A24 12 +12) + Zppr 4 2qvd + 2

therefore O =2puv+ 2gvA + rAp,
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This holds then for every position of T. Suppose T is at
any point of the great circle of which A is the pole; then A=0:
thus we geb ppv="0 for all values of and v, and therefore
p=0. Bimilarly ¢=0, and r=0. '

@ Expressed salgebraically, the result here obtained is equic, >
valent to the theorem® that, if the equation O\
P 7, g ‘ £\ K
r, Q-z p =0 ~\ &
&, jA R—-% | ) m \
have its three rovts cqual, then must Ps =R, and p=0,
g=0,r=0. v

283, Let there be any number of ﬁxaé&\ﬁoints on the surface
of a sphere; denote them by Hg ‘H} H, ...; from any two
points T and U on the gurface of tbe ‘spheve arcs are drawn {0
the fixed points: it is requh:eplio find the sum of the products
of the corresponding cosinggithat is :
cos TH,cos UH, + c08lTH,e0s UH, + cos THy008 UHy + ...
Lot the notatione'she same as in the beginning of Art, 378;
and let X, g, ¥(De' the cosines of the ares which join U with
A B C rcspecﬁ?ﬂy. Then by Art, 270,
cos TH‘l.c,c'hs: i, = (Al + ey +vmg } (N + wing + V)
- -—,L‘)‘\}\‘if + a2 v (v vy
SN MmO XY s,
:\\Sf'milar results hold for cos THycos UH,, cos TH;008 UHg,
«\ Hence, with the notation of Art. 278, the requived sum i8
.\\ : AP+ Q4+ wR+ (o + v )p+ (VA + Myg + (A + pA)T
\ / Now by properly choosing the position of the triangle ABC
we have p, 4, and 7 each zero as in Art. 278; and thus the
required sum becomes
AN+ pp/ Qv AL

* WEIERSTRASS, lo¢. wif.; BUnKsrpe and PANTON, Theory of Kq uations:
Chapter XIII, Examples 3% and 40.
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284, The result obtained in Art. 278 may he considered as
a particnlar case of that just given; namely the case in which
the points T and U coincide,

285. A sphere is deseribed about a regnlar polyhedron ;

from any two points on the surface of the sphers arcs are {

drawn to the solid angles of the polyhedron; it is requu'ed e .
find tho sum of the products of the corresponding cosmes\ N
With the notation of Art. 283 we sce that the sum iy \.
ANH+ ' @+ ' R ' '".( ‘~.‘:

ny

2 8 (¥
And here 3}3:@:3{:5, by Art. 281 N

Thus. the sum = §()L)L’ + i’ + vy = § coRYL]

Thus the sum of the products of the cm}ss 45 equal fo the product
of the cosine of TU into o third of tha number of the solid angles
of the regular poly}wdmn g. \

k.

286. The result obba.med \int A, 281 may be considered as
a particular case of that, just given ; namely, the case in which
the peints T and U“cmnmde

287, If Tu ls\&\quadrant then cos TU is zero. and the sum
of the Producbs‘of the cosines in Art, 285 is zero. The results
P=0, ¢=0,%=0, are easily seen t0 be all special examples of
this parbmular case.

N

«l
S

AN



CHAPTER XVIIL
- MISCELLANEOUS PROPOSITIONS.

288. If AB and A'B’ be any fwo equal ares, apd., f{&é‘ res AR and
BB’ be bisected at right angles by ares medling ab ) then the iriangles
APB, A'PB' are identically squal to one anmﬂ,{a\\%

¢* B

For PA= PAXnd PB=PB ; hence the sides of the triangle

PAB are respechlvely cqual to those of PA'B’; therefore the

tmangles N identically equal; in partlulla,r the omgle
APB=the angle A'PB', and therefore also APA'= = BPE',

\{his simple proposition has an important application to the

hmtlon of a rigid body of which one point is fixed. For con-

) '\ “ceive a sphere capable of motion round its centre which is

N fixed; then it appears from this proposition that any tWe

solocted peints on the sphere, as A and B, can bhe brought

simultaneonsly into any other positions, as A and B, by 2

rotation of the sphere round an axis passing through its centre

* BoLes, Theoria motus corporum solidorum, 978.
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and a certain point P. Ilence it may be inferred that any
change of ‘position in a rigid body, of which one point is fixed,
may be effocted by a rotation round some axs through the
fized point. '

289. Lot P denote any point within any plane angle AQB,
and from P draw perpendiculars on the straight lines OA and
0B; then it is evident that these perpendiculars include dn)
angle which is the supplement of the anglo AOB. The eor-
responding fact with respect to a solid angle is wulﬂghy of
notice. Let there be & solid angle formed by shree *plane
angles, mecting at a point 0. From any point.‘f{‘within the
solid angle, draw perpendiculars PL, PM, \PNon the three
planes which form the solid angle ; then the Spherical triangle
which corresponds to the three planes MeN, NPL, LPM is the
polar driangle of the spherical triangle) which corresponds to
the solid angle at 0. This remawie is due to Professor DE

*

Morgax. o0

290, Suppose three stm'i'gh'ﬁ' lines to meet at a point and
form & solid angle ; lot 0,8, and ¥ denote the angles contained
by these three straighib\lines taken in pairs: then it has been
proposed to call thé gxpression

J(1 - QO?’& - c08%3 — cos?y - 2 cos a cos Feos y),
the sine of thevsolid angle.  Sce BALTzER'S Theorie ... der Deter-
ma'-?z-ante;?,: 5 edition, page 177. Adopting this definitien it
it is @a@}}t"o shew that the sino of the solid angle lies between
zerbvand unity, (Cp. Art. 51.)

A Woe know that the area of a plane triangle is half the pro-
'S) ditct of two sides into the sine of the inclnded angle: by Art,
260 we have the following analogons proposition ; the volume

of a-tetrahedron is one sixth of the product of three edges

into the sine of the solid angle which they form. ‘
Again, we know in mechanics that if three forces acting ab

8 point are in equilibrium, each force is ag the sine of the

%
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J 3\ satisfied.  We shall accordingly give another demonstration,
AN
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angle hetween the directions of the other two: the following
proposition is analogous ; if four forces acting ab a point ars
in equilibrium cach force is as the sine of the solid angle
formed by the dircetions of the other three. See Siafiss,
Chapter I1

291, Let a sphere be described about a regular polyhedtans
let perpendiculars be drawn from the centrs of the sphefé'on
the faces of the polyhedron, and produced to meet the"sarface
of the sphere: then it is obvious from symmghry dthat the
points of intersection must be the angular phifits of another
regnlar polyhedron. \¥%

This may be verified. It will be found)on examination that
if 8 be the number of solid angles, @F the number of faces
of one regular polyhedron, then, 4nother regular polyhedren
exists which has 8 faces and lf..sél.i'd angles. See Art. 253,

202, Polyhedrons. Tha result in Art. 254 was first obtained
by EuLERr; the demonsjbfafion which is therc given is due to
LegExDRE. The dgmoriatration shews that the result is true
in many ca.ses’int\vhich the polyhedron hag re-endrant solid
angles ; for all’that is necessary for the demonstration 1s that
it shall be/possible to take a point within the polyhedron ag
the centp® of a sphere, so that the polygons, formed as I
Art:.%ﬁ,l’, shall not have any coincident portions. The result,
howovor, is generally true, oven in cases in which the comr

ition required by the demonstration of Art. 254 is nob

and shall then deduce some important consequences from the
result. ‘We begin with a theorem which is due to CAUCHY.

203, Let there be any nebwork of rectilineal figures, nof neces
surily in one plane, but not forming @ closed surface s let E be the
number of edges, F the number of figures, and S the mumber of
corner pownds . then F+8=E 1.
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This thecrem is ohvicnsly true in the case of a single plane
figure; for then F=1, and S=E It can ha shewn to be
geoerally true by induction. For assume the theorem to he
true for a network of F figures ; and suppose that a rectilineal
figure of # sides is added to this network, so that the network
and the additional figure have m sides coincident, and therefore .
m+1 corner poiuts eoincident, And with respect to tho new \.J)
network which is thus formed, let E, F, 8 denote the sat(r:ﬁ
things as E, F, § with respcet to the old network. The:nf;'

E'=Etn-m F=F+l, §=8+n-(m+ L)Y
therefore F+8-E=F+8-E \

But F+8=£ 41, by hypothesis ; therefore\Fi v 8 =E 41,

X'\ d

294, To demonstrate EULER’s theorqmswa sizppose one face
of a polyhedron removed, and we thhig¥obtain & network of
rectilingal figures to which Cavciy’s theorem is applicable,

Thus Fol48eE+];
therefore F‘-}:’S =E+32

295. In any polyhedron the mumber of faces with an odd number
of sides is even, and, ﬂ(é‘ atember of solid angles formed with an odd
wumber of plane apglds'is even.

Let @, J, ¢, thpudne.. denote respectively the numbers of faces
which are tl’i%gles, quadrilaterals, pentagons, hexagons,......
Let o Bls,... ... denote respectively the numbers of the
solid sngles which are formed with three, four, five, six,......
Plané ingles,

) ,\'f'],’hen, each edge belongs to #ww faces, and terminates at fuo
\ 80lid angles ; therefore

\ 2E=3a+4b +5c+6d+..0ury
2E=8a+48+by+68+4.....
From these relations it follows that e¢+eteée+...... , and

et ytet ..., are sven numbers,
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996, With the notation of the preceding Article we have
F=ag+4+b+ec+d+...... ,
s S=atfty+dt.n _
From these combined with the former relations we obtain, /A
AE—3F=0+20+5d+ ..o ; A\ ¢
9E - 38=F+ 2y +30+ o 0
Thus 9E cannot be less than 3F, or less than SE‘%.‘.'}‘.\“

997, From the expressions for €, F, and s,wgi«éh in the two
preceding Articles, combined with the resulb 2F +25=4+2E,
we obtain )

2a+b+e+dt ...)+2(a+,8+,7’\;’~8+ )
= 080 + 45 + 50 +6d+ ..y
a+b+etd+ .. )+ 2(9’-&.184-y+8+ o}

:: ;4+3a+ 4/3-!— 5'}’+65+ cony
therefore ™

O(at Bty Bk o) — (@26 + 8¢ +dd+ ) =4 ()
2(a+ b;kla}d+ L) —(at+ 3B+ 3y Habr )= hen (2)
Thereforq,w addition
~.\“ti&$‘u—(c+-y)-2(d+3)-—3(e+e)- ...... =8.
Z:hg..thg number of triangular faces fogether with the number
of sglicl omgles formed with three plane angles, canol be less tham

Rt

WS
3

© Again, from {1) and (2), by eliminating g, We obtain
Ja+2b+c—e—2f— ... — 98 -dy—.omne- =12,

s0 that 3a--2b+¢ cannot be less than 12, From this resu}t-
varions inferences can be drawn; thus, for example, ¢ sol
cannot be formed which shall have no triangulor, gwd?’ﬂ&ﬁ@mls ”
pentagonali foces.

In like manner we can shew that 3a + 2f3-+y cannot be lesa
than 12, :
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™ 300, Let « polyhedron be decomposed into any number of poly-

\
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298. PoinsoT has shewn that, in addition to the five well-
known regular polyhedrens, four other solids exist which are
perfectly symmetrical in shape, and which might therefore
also be culled regular, We may give an idea of the nature of
Pornsot’s results by referring to the case of a polygon. Sup-

pose five points A, B, G, D, E, placed in sueccession at equal )\
distances round the circumference of a circle, If we drawa

straight line from each point to the next point, we 'f'or.{‘n\'an
ordinary regnlar pentagon. Supposc however wpsjein’ the
points by straight lines in the following order, Ata € C to E,
EtoB BtoD, DtoA; we thus form a star-shapedhéymmetrical
figure, which might be considered a regulaz pentagon,

It appears that, in a like manner, fo ,;hld only four, new
regular sclids can be formed. To«bich" solids, the faces of
which intersect and cross, EULER'S thebrem does not apply.

299, Let us return to Art, 993, and suppose ¢ the number
of edges in the bounding celitdur, and ¢ the number of edges
within it ; also suppose sthe rrumber of corners ¢ the bounding
emtour, and ¢ the rgun{ber within it. Then

s\ J
SNE=t+d; 8=s+;

therefore (Y  l+ete=s5+5+F.
By A& e=5;
tharefp@a,;,\" 1+¢=5+F.

}%éan now demonstrate an extension of EULER'S theorem,
hich has been given by CAvCTIY.

N\

N\

hedrons at pleasure ; 1o P be the number thus formed, § the number
of solid angles, F the number of faces, E the number of edges : then

S+F=E+P+1L

For suppose all the polyhedrons united, by starting with
06 and adding one at a time. Let e, f, s be respectively the

%
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numbers of edges, faces, and solid angles in the first; let
¢, ', ¢ be respectively the numbers of edges, fuces, and solid
angles in the second which are not eonmon to it and the first;
let ¢, f%, s be respectively the numbers of edges, faces, and
solid angles in the third which are not common o it and the
first or second ; and so on. Then we have the following resulbi).
namely, the first by Art. 294, and the others by Art. 299

§ +f =e +2, . ;3
s+f=¢+1, N
sﬂ+fﬂ'=g”+1, “QO\'\"

By addition, sineo 54§ 48"+ ... =8§$—l~f’+f”+ ...=F, and
e+é +¢" +...=E, we obtain .\

W

S+F=EpBPl.

301, The following refergljtdés will be ugeful to those who
study the theory of polyhedrons: Evver, Novi Commentarii
Arademie Petropolétame,f’?ol. v, 1758 ; LEGENDRE, Giéométris,
Bock vi; PomnsorJeurnal de IReole Polytechnigue, Cahier X;
Caverny, Jomnqlgd?\l’.&"cole Polygechnigue, Cahier XVI; Porxsor
and BER’l‘RA:&Q,\’Uomptes Rendus ... de P Académie des Seiences,
Vol. XLv1; DATALAN, Théorémes of Problimes de Géomélrie Elémen-
tasre ; IERRMAN, Philosophical Transactions for 1856 and subse-
quent, yatrs ; Lasting, Abkandlungen der K dniglichen G‘aqg%lschaﬁ
..o Giittingan, Vol. x. For the connexion of disconf3nuous.

”‘iP theory with rotations of a regular polyhedron, gec KLEIN,

'f:’; ‘Das ITkosaeder (translated by G. G Morricy); KLEIN, Hihere
(" Geometrie, Vol. 11; and ScHOENFLIES, Krysiallsysiems U

Krystallstructur {B. G. Toubner, Leipzig, 1891).
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EXAMPLES XVIII

1, Find the locus of the vertices of all right-angled spherical tri-
angles having the same hypotenuse; and, from the equation obtained,
prove thut the Iocus is w cirele when the radius of the sphere is infinjte.

2 ABisnn ave of o great circle on the swfacs of a sphers, C its A
middle point ; ghew that the loeus of the point P, such thas the angle{ ‘\
APC=the angle BPC, consists of two greab circles at right angles to otiq\
another. Explain thie when the triangle becomes plane. p ,,':.‘

3. On a given arc of a sphere, spherical triangles of cqual a.fe& are
deseribed : shew that the locus of the angular peint opEgi'{t.é to the
given arc is defined by the cyuation \J

i tan (o -~ ¢ _of tan (o — ¢} \
ban~! sin @ '}-Hmn 1{ gin 8 '::\\'
L&
_ tan @ NI Mtan 8 }=
+tan 1{ain’{a+¢) Mk N Ferypamprn Sl

where 20 is the length of the given a.;‘e,"g the arc of the great circle
drawn from amy point P in the ]ocus.,iyérpendicula,r to the given arg, ¢
the inclination of the great circle, &iwhich 4 is measured to the great
virele bisecting the given arc at ﬁgfli angles, and @ a constaut.

4. In any spherical trisngle .

'"és Acota+cosBeoth
“eotecol b-cosAcosB’

5. If 6, ¢, w denbte the distances from the corners A, B, C respec.
tively of the poigfydF intersection of arcs bisecting the angles of the
spherical trizngle ABC, shew that

con f sig '?j\-"c) + o8 ¢ 8in (¢ — a)+cos ¥ sin(a - b =0,

8. IRALBY, O be the poles of the sides BC, CA, AB of & spherieal
tria.nglé\l C, shew that the great circles AA’, BB’, CC’ mest at & point
P, fudh that
A

tawe

J cos PA cos BC = cos PB con A= cos PC cos AB.

J T IO be the point of intersection of arcs AD, BE, CF drawn frfnn
the angles of 4, triangle perpendicular to the opposite sides and meebing
themat D, E, F respectively, shew that

tan AD tan BE tan CF
tan QD' tnOE' tanOF

o~
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are respectively egual to

cos A cos B cos O

l+c?s-B w050 ToosGoos A cosAcns B

8. If p, ¢, = be the ares of great circles drawn from he angles of &
trisngle perpendicular to the opposite sides, {e, '), (8, &'); (v, ¥ the,
gegments into which these ares are divided, shew tlut N\

tan a tan o’ =tan 8 tan 3 =tan~ytan<y'; A

2\

and cosp_{z o8 ¢ = cos 7 . o\
eosacosa  cosfcosl  COSYOOEY \/

9, In a spherical triangle if arcs be drawn from thg ‘a,;';gles to the .
middle points of the opposite sides, and if e, o’ be the }‘wo parts of the

one which bisccts the side a, slew that PE\Y
02 aend 3
D

les AB, AC of a gpherical

P

10. The are of a great circle bisceting t%é
iriangle cuts BC produced at @ : shew [y
&) .l
cos A sin Z‘:’Sﬂz{l G—Qﬁ sin < -'_; !

11, If ABCD be a spheric#Ncuadriluteral, and the opposite sides,
AB, CD when produced mpei;a,ﬁ E, and AD, BC meet at F, the ratie of
the sives of the arex dpawn from E ab right angles to the diagonals of
the quadrilateral is‘z-k(é same aa the ratio of those from F.

12, If ABC%&%.&? spherical quadrilateral whose sides AB, DG are
produced togneet at P, and AD, BC at @, and whose dagonals AG, BD
intersect at R spbhen

sithABL#in CD cos P ~ sin AD sin BC cos @ =sin AC sin BD ens R.
13/IPA’ be the angle of the chordal triangle which corresponds &
gheaitgzle A of o spherical triangle, shew that

O

. cos A'=s=in (8 - A) cos g.

o~ \ N 14, ¥f the tangent of the radius of the circle degeribed aboub &

\ ) N spherical triangle is equal to twice the tangent of the rading of the
circle inscribed in the trisngle, the triangle is equilateral. _

15. The arc AP of a circle of the same radius as the sphere is equal FO:

the greater of wo sides of a spherical triangle, and the are AQ taken 12,

the same direction is equal to the less ; the sine PM of AP is divided ot

E, s0 that %=the cosine of the angle included by the two sides:
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and EZ is drvawn parallel to the tangent to the circle at ). Shew
that the remaining side of the sphemcal triangle is equal to the aro
QFZ.

16, If through any pomt. P within » sphencal triangle ABC great
circles be drawn from the angular points A, B, C to meet the oppoxite
sides ab @, &, ¢ respectively, prove that

oin Pz cog PA | sin Phcos PB | sin Pecos PC 1 h
sinAa ' sinBb simCe ‘\

17. A and B are two places on the Earth's surface on the same sl,dq
of the equator, A being further from the equator than B. If, the
bearing of A from B be more nearly due East than it is from a.ny Uﬁher
place in the same lutitude as B, find the bearing of B from A,

18, Y¥rom the result given in example 18 of page ﬂﬁ\mfer the
possibility of a regular dodecahedron.

19, A and B are fixed points on the surface of a cre, and P is any
poiut on the surface. 1f @ and b are given cons afg, shew that & fixed
point S can always be found, in AB or AB pmdu d, such that

acos AP+ Beos BP= = GDB‘SP
rhere s is a constant. : N .

20. A, B, G, .. are fixed points on the surfac-e of a sphere; a, b, ¢, ... nre

given congtants, IfPhea point, 4 n‘n‘t.he surface of the sphere, such that
o cos AP + b cos BF'-f—ccoaCP-i- .. =constant,
thew that the Iocus of P is Ktn.rcle.

+ )

X EXAMPLES XIX.

L. One side of. 4 reguiar spherieal quadrilateral =cos=}{3), find one
of ita angles, .,'\ } (R. U. L, 1808} -
2. Provg ﬂl’a.t the second part of Euclid I, .21 'does not necessarily
hold an ¢ ﬂ}c’ sphere,  Shew where Euclid’s proof would fail on the
sphera
Ofall the spherical triangles that st«md on a given base {supposed lesy
than % quadrant), and whose vertices lis on a given gread cirele that
"\ \euts the hase perpendienlarly at an internal point-of it find which one
) bas the smaliest vertieal angle. - (R. U. L, 1889.}
3. Prove that in a spherical triangle )
cot? 3 B 4 cot?23 G+ 200t %Bcﬂticm“
sinfa

i3 equal to t.he expression got by replacing B, C, and o by another pair
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of angles snd the sida between them. Find the value of the expression
symmetrically in terms of the sides, (R. U. L, 1895}
4, In a tetrahedron, if a,, @, are a pair of opposite edges, and A, A,
are the dihedral angles at these edges, then the expression
%y Oy
sin A;sin A,
has the same value whatever pair be taken. {R.T. I 1893\}

QY

5. A, B, C are three points on a variable parallel of latitude, She-pole
being P; the ares AB and BC are equal ; join PB by the arcef a great
cirele, and'let the great circle through A and C cat PB in @ ;"the difference
between the longitudes of A and B is constant angd .15» denoted by A
Shew that DB is greatest when the tangent of Lhmﬁtltude of B equals
Aeosh. - {Sc1 and Art, 1885.)

6. A spherical quadrilateral ABCD, whose sides taken in order are
o, b, &, b, is inseribed in a small cirele, &Hew that

tan?3 A= cns%(a b} sgc o+
{Sci. and Art, 1897.) .

7. M is the mid point of t.he,sﬁde AC of the trianglsc ABC, and BC1 i
produced to meet in D the greak, cirele through B and M.

If the angles ACD and ABE ave equal, shew that b +o=m.

If the angles ACD and BAC are equal, shew that BM =4

\ (Sci. and Art, 1897.)

8 Ifthes t}f. two sides of a spherical triangle is = shew that the
sem of the opposite angles is also .

PAB is af ajpherical triangle, of which the side AB iu fixed, and the
angles P&B, PBA arc supplementary. Prove that the vertex P lies on
a ﬁxe{g,rea,t cirele, {Seci. and Art, 1808.)

“9.‘ If A, B, C and A, B, G’ be the vertices, taken in the same 608

,\% esch case, of two trirectangular triangles on a sphere, and if AA', BB,
0’ be joined, each of these arcs will be intersected by the other two in
) * pointe at equal distances from its two extremities.
\m \™ 10. 1f the opposite sides of a spherical quadrangle arc perpendicular
%o one another, the diagonals are also perpendicular to one another

If w0 disgonals of a complete spherical quadrilateral are quadrants,
the third alse is a quadrant, (J OACHIMETHAL }

1. A, A’ are the areas of two faces of a tetrahedron, « the sngle 8%
which the}" inbersect, ! the length of the edge, and V the volume; shew

that 2AN gin a =3IV,
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12. The sitdes of & spherical quadrilateral inscribed in n, small circle
are &, ¥, ¢, and d; tho semi-perimeter is denoted by s, the spherical
exceas by E, while N and D are defined by the relations

N=./Asind{s—a)sin (s~ b) sin } (s - ¢) sin s~d)},
D=/{cos dla+b+c+d) cosd{a+h—c—d)

cosdate~b—djcosi{a+d-b-c))
Prove that

sin 3B =N /v'cos & ¢0s 35 cos 3¢ cos 3d:

N

cos 2B = D/n/cos ba cos 1B cos £¢ cos 34, {FEART.) ( \

13, Prove that the Jacobian of the angles of a spherical triangle
taken with respect to the sides is numerically equal to sin Afsind, ™\
(Tripoa;l%l. )
14, Definition, A foursided spherical figure ABCD, w,]:mg\e diagonals
AC, BD bisect one another, is called a spherival paralleldgram,®

The following properties may easily be proved. L \)

{1) The inferseetion of diagouals, 8, is equi{fatzmt from a pair of
opposite sides. )

§ is called the spherical centre of the parllglogram,

(2) 1 two consecntive angles of 4 sphekical parallelogram are equal,
1t is inseribable in o small civele, O

{3} I two consecutive sides are’ egial the parallelogram is circum-
seribable to a small circle. N\ \

{4) The figure reciprocal o, s spherical parallelogram fs another
parallelogram having the sdme spherical centre,

{5} The intorsections of\a/ pair of opposite sides lie on the polar greas
eirele of 8, \\

{8) Two consecufive corners of a parallelogram and the antipodes
of the other two@orﬁers lic on & small circle.

(T) It A, B fe)Mixed points on & given small circle, and P, § variabls
points on_ ti‘k "a-ntipoda,l small eircle, such that PQ=AB, then the
figure Xﬁ‘ged by the greas circles AP, PQ, QB, BA is a parallelogram.

{8){The ares of this parsllelogram is the same wherever P and @ may
bewn the small circle, provided PQ=AB. 1Its spherical excess is four

tites Lhe angle between the great and small circles AB.
) {8} The area of the triangle ABP is constant.

{10) The sum of the angles of the triangle formed by the great arce

PA, PB and the sroali-civele arc AB is twoe right angles.

*EULER, Nop. Aot Petrop., X, p. 5T. GUDERMANN, Niedere Spharik,
%7896, Barmzzg, Stereometrie, § IV, 16.

A
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CHAPTER XIX. N

N\

THE EXTENDED DEFINITION OF THE SRHERICAL
TRIANGLE. <0

302. In the foregoing chapters it has been convenicnt to
consider only those spherical trianglesi,\}hic-h comply with the
conventional restrictions of Art-iclesx\:ji‘ and 23, namely that
none of their sides or angles shall exceed two right angles,
For the practical applications.of “Spherical Trigonometry sueh
triangles are the only ones\with whose properties it is neces:
sary to be familiar ; hubithe subject does not take jts proper
place in the sciencerof Pure Mathematics unless its full gene:
rality is preserged\by the discarding of a restriction which,
viewed. fromf4, theoretical standpoint, is arbitrary and ur
necessary, AMOBIUs * (in 1846) was the first to extend the
traditiqn@ll. definition of the spherical triangle and to shew
that, fho parts of the gencralised triangle satisfy the same
fundamental formulae as those of the original. It is proposed

;\{n“ﬂhe present chapter to consider very briefly the. ideas
\ ‘underlying this important generalisation, and to obtain a few

of the most fundamental results: for a complete account of

* ¢ eber eine noue Behandlungsweise der analytischen Sphirik™ {1846}
Ges. Werke, Bd. IT, and < Entwickelung der Grundformeln der sphir-
tschen Trigonometrie in grissimiglicher Allgemeinheit” (Verha’ndf-uﬂg”
der Kon. Sdch, Gesellschaft der Wiss, zw Leipzig, 1860} See also
Cuauvever, Trigonometry, Part I, Chap, TV. Cmauvessr does not
assign divections to the great cireles which furm the triangle. Cp. Arb. 39
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the subject the reader is referred to Dr. E. STUny’s* memoir
on Spherical Trigonometry and Orthogonal Substitutions, from
which the substance of several of the following Articles is
taken,

- 308, To begin with, since a complete turn, that is a revolu- .
tion through an angle of 2r, leaves unchanged the position of N
the object turned, it is natural and convenient to regard angles’ ’
or ares of great circles, which differ from one ancther.}{?y
multiples of 27, as cqual to one another. This copyention
justifies in all respects (save one, to be consideréd, in due
course), the assumption with which we . shall sepout, that
every gide and angle of any spherical trianég;ﬁes between

the limits 0 and 2r. On this understan ling, the number of
triangles having three given points ornthe sphere for corners,

though greater than unity, is not infinite! :

304, Further, in consideri ng the angles about any point on
the surface of the sphere, wetmust select a snse, or direction
of turning, in which scnee, the angles are to he reckoned
Positively ; say the sepsé\lontrary to that of the rotation of
the hands of » x&rate{{faﬂ face npwards on the outside of the
surface of the sphere’ If we fmagine the watch to be mov.ad
over the wholessitrface of the sphere, we get for every point
on -the surfageya definite sense in which rotations are to be
measured..ga}ifively. '

305 Definition of the spherical triangle, Now ]eif ABC
bp\.ff;[}jre(] points cn the sphere, and let them be joined by
“\8reat circles, AJorig each of these great circles let us choose
\ ;arbitmrily a positive direction ; and let us denote by b e
the ares, whose magnitudes aré contained between 0 and 2m,

*.E' BTUDY, Sphdrische Prigonomatrie, Orthogonale g;,bs'g_s;irEMf"“e" m
Ellintisene Functionen, (Abhi. der Ken, Sich. G ol dor
% Letpedg, Bl XX >
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which are traversed by a point starting from B and moving
in the positive direction along the great circie BC to C, then
in the positive direction along CA to A, and then in the positive
direction along AB to B, Further, we denotc by o the angle,
whose magnitude is contained between O and 2w, through
which the groat cirele CA must be turned in the positive stude
about A in order to bring its positive direction into coingidence
with the positive direction of the great circle AB; fand “yare
defined in a similar manner, g o

The six elements @, & ¢, o, S, 7y, thus gdéiined, may be
said to constitute the spherical triangle “A’QS The angles
a B, y are called the angles of the triaugle, the ares ¢, be
the sides. SO

_ K7, \d

306. It should be noticed that"this triangle, unlike the old
traditional spherical triangle, i§ ot sufficiently defined by the
positions of its three cormerd. The complete specification
involves also (Ist) an awbiteary sense for rotations aboub
points on the sphere, (2d) positivedirections arbitrarily assigned
to the three great,eirclés, (3rd) the order in which the corners
oceur in the n{m?e of the triangle (i.e., other things being ut-
changed, the\*{r'rangle ABC has not the same elements as the
triangle AGB).

oy

Y
307> It must also be carefully noted that the angles o, By
of the generalised spherical triangle as here defined correspond,

:&1 the particular case of a triangls whose sides aro all less than

g

ar, not to the inferior angles which in former chapters we }l('f""'
denoted by A, B, G, but to their supplements. The substitution
of Greek for Roman letters in naming the angles of the
generalised triangle will be a sufficient safegnard from cotr
fusion between the former and the present meaning attached
o the phrase “angles of the spherical triangle.”

308. The polar triangle. Every great circle has two poles,
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but when one of the two directions in which & great circle
may be traversed by & point has been arbitrarily assigned to
1t as its positive direction, one of the two poles is at the same
time, by a cortain convention, assosiated with it as its pols,
and the ambiguity thus removed. We choose, in fact, that
one of the two poles which would lie to tho left of & person
walking on the outside of the sphere and traversing the greaf
circle in the positive direction, o « N

The polar triangle of a given spherical triangle i§ ‘then
defined to he the triangle whose corners are the poleg’of the
sides of the original triangle, and whose sides.h&ve ‘for poles
the corners of the original triangle. The relation between
the two triangles is completely reciprocalyand it is readily
seen that the sides of either are equal, wespectively to the
torresponding angles of the other. §0'that spherical triangles
fecur in pairs, the members of which” are derived from one
another by interchange of angles ‘e sides.

309. Different triangles having the same corners. In con-
sidering the number of ‘triangles that can bo made having
three given Points for\cbrners, we notice that we have, in the
€ase of cach of the Khrce greatb ¢ircles joining these points, a
choico of two ditetions, either of which may be taken as the
positive ona\ Consequently there are 2x 2x 2 or 8 different
Possible tfanigles.  And if we farther reserve the right to
chang ths arbitrarily assigned positive sense for angles al?out.
& Poifibvon the sphero, tho number of triangles h:m.ng given
cofners hocomes 16, The following diagrams shew (in stereo-

.@“Phic Projection) tho forms of four of the first named eight

/ triangles, torresponding to essentially different types. ‘The
Others can be easily derived from them. The sides are printed
1ore heavily than the remaining ares of the great clrcle? of
"hich they forin part, and the angles are indicated by light
#rowed curves,

N

N

£ )

\
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310. It will be convenicnt to distinguish the elements of
the eight triangles having the same corners by the numbers
1, 2, ..., 8, used as suffixes, and we may asgign the suffix 1 to
the particular triangle whose sides are less than semieircles.
If the suffix 2 be given to that which is derived from the first 1
by reversing the direction belonging to the great circle BO, \ib
is seen, by comparison of Figures 1 and 2, that ™

Qo= ~dyy, By=0y, o=}, 1. 0
ag=ay, ,82=7r+,81, Yo=Yy J(a;

The corresponding substitutions for the othert triangles are
obtained equally readily, and the complétd.set of results i
represented in the following table: (%

EABLE I:"\: O

I b ¢ (hYa Bob oy
m |« Bl B Boom
(2) ‘ 2w —a B oo™ o a 43 TN
3 iom 27 b, ¢ Tta; B | Ttm
S —
| NS - T
7 e e [
8] 1\ Q-0 | 2w -y a T8 ] Tt
;{6).\:‘ Qr —ay b Or—¢, | wHa g ! omtm
t‘\q i — — _ -
\:“\“(J} ‘ 2“’—&, 2r-51 [ T+a | 'rr—l--ﬁ} 1
"\ (8) P 2 | e
| 2r-ay | Sr-b | Br—g | o O

Only one type of transformation, namely that correspoudin_g
to the reversal of the direction assigned to a great eircle, 18
nocessary for the derivation of any seven of these triangles
from the eighth. By it, for instance, (2), (3), and (4) ar®
derived from (1); (5), (6), and (7) from (2), (3), and (4); 594
(8) from (5), (6), or (7). It will be noticed thab the fist
diagram represents (1); the second (2), (3), or (4); the third
(5%, (8), or (7); and the fourth (8).
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311. Imequalities satisfied by sides and angles, When the
three sides of a spherical triangle, of the kind eonsidered in
previons chaptors, are given, the angles are determinate ; but
given arcs ¢, b, ¢ can be combined to form a real triangle only
if they satisfy the inequalities ¢

B+h+eZ2m, bte—az=0, eta—b=0, a+tb-e=0 . |

In like manner a triangle having given angles A, B, G,\g)
possible onty if A+B+C=m, . QO

T-B-C+A=0, n-C-A+B>0, T—A-BFE D,

Let us now introduce, for tho generalised, f7iangle, tho

notation : "\
28 =3r—a-b-g 2¢ =27r-g—]8~7,
3 = —a+4bte 2o’ =’,:\>u+,6’+;v,
28" = e—b+te 20'"(:,\ T a-B+y,
25" = at+b-c 2 at -y,

and it i3 seen at once that_the Qéorresponding inequalities,
which must be satisfed byvﬁhé' gides and angles of the eight
sorts of spherical ‘orianglé:f-espective]y, are as indicated in
the foilowing tables e B

AN TaeLr IL
£ 3

[ T
’ K\ ] ‘ v o &
ST 20 | =0 | =0 | =0
_~T\__ . - —
S0 =0 =0 =r =x
N @ [ =0 [= | =0 | == .
. @ | =0 = == | =0
(;} N Z-7 = =0 =0
@ | =-x | =o = =9
IR =0 =
® | =-r | =x | =x | ==
I
——
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Tapre 1L

319, So far we have gensidered only eight of the possible
triangles having givén corners. 'The other eight are got by
reversing the sense'in which angles at any point on the sphere
are to be me:i@:étf positively, which is of course pquivalent 0
taking 2T &', 9~ fB, r—v instead of a, B, ¥ respectively-
Hencr.f.g&iré “have the following relations, wherein accented

| suffixds/indicate association with the second set of eight

tfiangles :
| By
: R \ o= =T — o ]
| ol L ry T =T = Ty (,,._1 9 8)
| ‘w~‘ U'”=TI'—0‘” e ver =1, 2y...0/
: 7\ + 3y T =T — Ty y
| N\
3

Thus, while the inequalities for the sides of the second s of
triangles are the same as those for the first set, the inequalities

il

for the angles are different, being as shewn in Table IV.

P\




o
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TapLe IV,
p ¢ o o
(1) _;_;_ __-.11"- __'—:7,- =
(29 =0 =0 =u =r
@ | =o = =0 = P
_ .
(&) =0 =r | =n =0 |\
5y | =o =9 =x | Zw'l)
__(_6’)_ =0 = =0 i )
7Yy [ =0 = =a (R E=0
) (89 =-7 == .fE’;;r* =

o

313, With regard to the poldrMriangle of any one of these
triangles, we can find to Wlii;}h type it belongs from the con-
sideration that the angle§hand sides of the polar triangle will
satisfy the same sets of inequalities as the sides and angles of
the original trian gké{é‘spccbively. )

If, for example, we take the friangle (8), the angles of its
polar triangle/inust satisfy inequalities corresponding to the
8d line itk Fable II. Looking for these inequalities in the
angle tﬁ-ﬁ}es, we find them only in the 3rd and 6th lines of
Tab}‘QIV. Henee the polar triangle is either of type (3’)_ or
(?f:ty Pe (6'). Again, as the angles of (3) satisfy the 3rd line

~of inequalities in Table 1[I, the sides of its polar triangle
“Sabisfy the same inequalities, and these we find only in the

6th lino of Table II, which helongs to types (6) and (§)
Thus it appears that the polar triangle of a triangle of type
{8} is a trian gle of typs (§').

314, The fundamental formulas. The cosing Jormulae,
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proved in Chapter 1iI for the restricted spherical triangle,
assume the following form, when the new notation is adopted :

cos=cosbeosc-sinbsinccose,
cos b =cos ¢ cO8 ¢ — §in ¢ sin 2 cos 3,

cos c=c080 C08 D ~ sinasin beos vy,

Suppose now that fhese relations are satisfied by six quanti%i\q‘&

a, b ¢, v, B, v, and that we make the substitutions, ()
&:27!’"—9:; b*b" G?—G’, (”’:‘. ()
¢ AT m
a=d B=f —u, y=y-m O

wo find that the quantities represented by fhie detented letters
satisly relations of precisely the same forrrk ~That is to say the
formulae (ii} are unaltered by the substiftdion (iii).

Now we know that the formulagfiihare true for = triangle
of type (1}; and we have seen( Hfat the clements of the
triangles (2), (3), (4), are deriwed from those of (1) by the
substitution {(iii) and thc“ﬁf.{) "others symmetrical with it.
Hence it appears that thgjféfﬁmlae (ii} are true for the triangles
(2)1 {3)! {4). L ‘

And since from the, triangles (2), (33, (4), we derive (5), (6),
{7}, by the sa a'\isuins’oitutions, and (8) likewise from one of
the latter sgh, of three, it follows that the formulae (i) are
valid for the'eight types (1), (2),... (8).

Furt,he:rg\ the formulae are unaltered when we put Iz -«
2o 827 —y, insteud of «, B, ¥ respectively ; hence they are
validalso for the types (1'), (2%,... (8).

“ hus the cosine formulac are seen to be trme for the
% generalised spherical triangle.

315. The supplementary set of eosine formuloe, namely
cos a=cos B cos y — sin @ sin yeos g,
05 B=c0o8y cos o — sin ysinacosh, [.ooovrerie (iv}
) 08 ¥ = ¢08 o cos 3 — sin a gin Beos ¢,
may be treated in the same manner. They are unaltered bY
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the substitution (iii), and therefore, having bheen established
for triangles of type (1), are equally true for the sixteen types
of the generalised triangle. :

316, The same reasoning applies to the sine formulae
sing sinh sine
sjrl—aEWS‘:Eih_y’"” ....................... ('V)'\:\
establishing their generality, and therefore that also of the "
formulae derived from them, namely N
9= sin b sin ¢ sin a=sin csin ¢ sin S=snasinbsimyP | ;.
2N —=sin Ssin ysing =sin ysinasinb=sina sinﬁ?in ¢, }(ﬂ)
and

4n?:= 4 gin s5in ¢ sin s” sin 8™ , x’,\\ g
=1 - cos% — cos?h - cos?; -+ 2goge 08 b cos e, (vii)
NN

4N? =4 gin rsin o’ sino” sin &
=1 - cos?u ~ 60523 — cosfy+ 2 cos a cos Scosy.

317, The cofangent formulae of Art, 49, and the formulae
of the type N
sin g cos b+ sif1 6 cos 3+ cosa sin bcosy=0,}
sin & cose 4 gih b cos ¥ 4 cos g sin ¢ ¢os =0
(which are thosc\liscussed in Art. 53,) are also of general
application, heihe deductions from the sine and cosine formulae.
AX

318, ':[fhjus. all the fundamenial formulae of the restricted
triangleare likewise formulae of the sixteen types of the
genralised triangle.

& V319, Delambre's analogies. In generalising those formulae

N

h
) 2

\which, either in their final form or in the course of their

deduction from the fundamental formulae, involve the taking
of a square root, we have to proceed with cars in the matber
of the ambiguous sign. For it will be remembered that, m
the case of the restricted triangle, the choice of sign was
determined from consideration of the limitations which. had
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been arbitrarily imposed on the elements. (See, for example,
Art. 56.) Now the restrictions upon the values of the
clements being different for the 16 types of the generalised
triangle, & diversity of signs js to be expected.

290, From the formnlae (ii), proved valid for the gene-ra.lised

triangle, the following are immediate inferences. A
Gin?d gin ssin & cos] sing’ sins” R\,
la= .~ 53— o2ta=—"—37. 74
2% T gin b sing’ 2 mnbsine” 1. QO
o . . p
..., singsins’ . gin ¢ sins A
sin?fB==—.— , costB =N (ix)
sin¢gina sin ¢ sin € ©
. . . SN
. 5y _sinssins” . sin st
BNty =T costhy =" N ¢
ginasinb sin Bin &
, . . N
and from (ix} again we derive &
- i T ‘3 .
gin 1B cos by sinfs”  coshRwin 1y fsins"” (x)
n. o Y fileotlia g 5y Al e
gin Lo SEa’ o\ Sin e BNt

. Now in these two expres&ioi‘;é“the particular square roots 0
be chosen are not indepeuﬁén'ﬁ of one another. In fact if the

former root-he 4
&

W Vsins”
+% é-*.—'_, (EZ il),
\"' 3L Lh
the latter must st the same time be
2O o s’
x'\ N/ &1 o
Fm},"if sve denobe the latter oot by
\ g * ‘H!
R\ s =2l
QN “sine’ ==,

2N\ ) ’
"\ then we get, on multiplication,
_ 4sinile sin’e
which, in virtue of formulae (ix} and {(vii), reduces to
gina sin b sin csin B sin y = e . dnt
g0 that ¢¢ = + 1. Thus e=¢.

sinfSsiny _ ging sing”’
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By adding and subtracting the formulae (x) wo get the first
two of DERAMBRI'S analogies :

sind(B+y)_ L cosh(h—o) sind(B-y) _sinj(b—0)
sinke © cosga ' sindw  © sinja A (xd
cos}(B4y) _ _eoshd+e) cosf(B-7) _ . sindth+¢) (&) (=)
cosge T cose Teosla | sinje

321, From the mode of proof it is scen that in the first row{ \))
the upper signs are to be taken together, and the lower sighg\
together. But further, throughout the whole group ) of
formulac the upper signs go together, and the lower ‘signs

. e b .
together. Therc are several ways of seeing thisy w} may, for
example, derive the two left-hand formulae simwitaneously by
a method similar to that adopted in derivjqut?he two formulae
of the upper row. Or we may infer ib '{}yﬁo‘ﬁlparing the upper
formulae with the factorised form of the'équalities

sin B+siny sinf+sine
Sin o Ly BmLd
which are immediate infereieds from the fundamental sine
formulae, . o~ !

322, In additiunogﬁ',\bhe formulae (A} there are two other
groups of formuldcy which we may denote by (B) and (C)
derived from (&) by oyclic interchange of the letters @, b, 6
and of «, f3; ¢ In each of these groups, taken by itself, all the
upper signswgo together, and all the lower signs go together.

~& .

323% Jt can be shewn further that when the three groups of

f‘fm’}ﬂao (A), (B), (C) arc considered fogether, we must take
@ither only the upper signs, or only the lower Signs. :

R

W For DELAMBRE's analogies are relations between four quan:

tities, of the form - w_ ¥
) o & &
If we pus these in the form .
' : w—T _YFE-
wrs yEd
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then from the formulas (A) we get, when we take the upper

signs,
f SH s!h‘ L P Sn‘) SIH
tan & tans = tan 5 an -, tan 2 cotZ- =cot?, tan = 1
272 2 2 2 2 2 2 "
(4) (xii)
e o g . o, o 8 3
ten cob - =cob - tan 5, tan--fan——=tunfan - ;
AN Cot 5 =cobztan 5 tan-gtan-p=tangtang; | \
+ A
and, when we take the lower signs, N\
a_ U_! s” 8”1' " o__U! sl! I .‘] z N
tan - tan & = cot—- cof—-, tan 7 cotZ = tanZ cot —£ ™
272 2 3 2 2 2 2
, . " r 4 (A) (i)
[+ o & & & [ig L ..g‘
tan 5 cot 7= tan 5 cot oL ta.n? tan S cot§co’c 7

s
If now the corresponding formulae (B}}smd (C) Ye formed,
it will be seen at once that the assumptitn, that in any one of
the groups (A), (B), (C) the upper sign'¢an be taken, while at the
same time the lower sign is takeh in another, is inadmigsible.

~ 824, Proper aud imprqpe;'f “riangles. Those triangles for
which the upper signs mst be taken in DFELAMBRE'S analogics
are called proper trigngles. Those for which the lower signs
must be taken ari@i ed improper trigngles.*

325, Narmp's formulae for taun }(h+¢), ete., derived from
those of DELAMBRE by division, are the same for proper as for
impropii'j:riangles.

ﬁg&NIndeed all the trigonometrical formulae of proper
. ~i}r%gles may be divided into two classes, the first those which
,oaire valid equally for proper and for improper triangles, the

Ot second those which hold good only for propor triangles. The
formulae of the first clags are founded on the sinc and cosine

*This distinction betweon the two sorts of triangles correspends to
the distinction between proper and smproper orthogonal substitutions.
i.c. those for which the determinant of the coefficients equals +1, and
those for which it equals - 1, reapectively.
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formulac, those of the seeond on DELAMBRE'S analogies. From
these Toot formulae we may pass to all others of the same class
by unambiguous operations, and so likewise we may pass from
formulac of the second class to formulae of the first. But the
transition from formulae of the first class to formulae of the
second requires the determination of the sign of & square roof,
that is to say a choiec between two alternatives.

'\

327, It is easy to see that the upper signs in DELAMBRES
analogies arc those which must be taken for a triangle Syhose
sides and angles ave loss than 7. And indeed it wilk be’found
that the triangles of types (1), (2), {3), (4)are proper triangles,
while {5}, (6}, (7}, (8) are improper. N

328, Further, if we increase a single ,s,iﬂ:e"or a single angle
of a triangle by 2, we thereby changebiasigns in DELAMBRE'S
walogies, This circumstance would be of importance if we
were to extend our discussion, totriangles Wwhose gides and
angles are not restricted to he Mess than %r. It emphasises
the ohvipus fact that, whilé’aﬁgles which differ by multiples
of 2r may be I'egurde,“d\“as identical so long as we use ouly
their own trigon n{étl’ical fanetions, they can not be 0
regarded in expuessions where the trigonometrical functions
of their sub-mmibiples are employed. '

329, It. ﬁii%ht- be supposed, since the substitution (ii),
appliedte’any one of DELAMERES analogies, does not alter the
sign,-dnd since all the triangles (2), (3) ... (8) are derived from
(1)}’}' one or more substitutions of this type, that all the

($ight triangles are proper triangles. But, as a matter of faet,

-

» When the substitution (i) is applied to the trisngle {4), for

oxample, (see Table 1), we do not immediately geb the triangle

(6). The set of elements that results is
4=27-a, b=by, c=2’f—ﬂl}
e=1 4o, ﬁ-—-ﬂ'.lr—i-,@l, y=7+%Yn

“OTreSponding 0 a tria.ngle whose a.ngle ﬁ is greaber than 2m.

N

2\
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'We have to subtract 27 from 3 in order to bring the triangle
within the stipulated restriction, and then we arrive at type
(8). It is this subtraction of 2w which, though leaving the
fandameuntal formulae unchanged, alters the signs in DE-

LAMBRE'S analogies, and brings type (8) into the class of

improper triangles.

o N2
O\
330. Another proof of Delambre’s analogies.™ o\
N
From the sine formulae we have A\
- . - + S %
sin Bsina=sindsing, O
sinysing=sincsina; (N
whenee v
(sin B —siny)sina = (sind — s\“ Yein @y conerees (xv)
(sin 8 +sin y}sine = (si- l{-k?in ¢) 8N thavvrennnns (xvi)
Again from (viii) PN,

sinbeose+sina cos;y.+’ébs bsinccosu=0,
sin ¢ cos b + sin a 8 + cos ¢ sin beos =03
whence by addition 4
(cos B +cos ) sin'e +8in (b +6). (1 +cosa)=0. ...(xvil)
The correlative fgm}mla,
sin ( )‘3{\3}‘)(1 +¢08 @) + (cos b+ cos ¢ sin =0 ... (xvil)
is deduced by consideration of the polar triangle.
If, now; G eruations (xv)...(xviil) we factorise all the terms,
and ;;}{roduec the abbreviations '

7 sindB-9 sinyo=1I, sing(b-c)sinfa=2

.'s'\ cos 1{B—y) sin Ja=m, cosd(h-c)sinfo=p,
A\ sind(B+y)eosto=n sind({b+e)cosfa=y,

cos J{(B+y)cosda=p, cosi(b+c)eosia="0,
we get

Ip= A, = pv, }
Mp= — vy, np= — plo,

*CHAUvENET, Spherical Trigonometry, §§25-27; BaLTZER, Trigo-
nometrie, §5, X,
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Now multiply the last two equations and divide by the
second, and there results

Pt
Hence cither (1°%) P=0,
and at the same fime I=4, m= ~vy, »=—p;
or (27) p=-0, Oy
and at the same time I= - X m=v, n=p. S

These relations are the group (A) of DELAMERES fomﬁulae.

331, L'Huilier'’s Formulas. These are formulaa‘&f‘thc class
that are not the same for proper as for 1mprop~e’r triangles.
For proper triangles they are deduced from, pherequalities (xii),
and are simplified in form by the introdu 16d of a new symbol
50 we have the following relations, oﬁ Whlch the first is to be
regarded as the definition of L.: A

tan tan ta,n t.a,p S - =
N ga Sv [P GRALEEE (n)
utan tan - ta,n tan — 3

M\ 2 2

'i’}s o & b
3 _yy 2
\t\anztd.ng’oanotan ;)—-L,

Al

N\
g " e s

:7 =& frd & F >
\ ¢/} P - _=L2, S . ¢.¢
AN fan 5 5 tan 5 tan 3 tan - (xxi)

A
and fom:‘orhcrs got by cyclic interchange of
Smnl*, douhly, and triply accented letters, |

’o

vﬂ
,\:"). t-ani—ztanQ:tanétr&nE:t&nEt&n?

) Y
 §

N rrt Ll
= tan o tan‘%:L. [

The definition of L involves the taking of a square reob; for
triangles whose sides and angles lie between 0 and = the
Positive root s to be chosen.

....... . ... {xxii)



'.\’.

N
%
\ )

258 SPHERICAL TRIGONOMETRY. [§35

Corresponding results for the improper triangles can he
derived from formulae (xiii).

332 The following references will be useful to tho reader
who Is interested in the wider views of Sphorical Trigonometek N
and in ibs relations with othor branches of Pure Mathematics.

. { N

E. Brovy.  “ Sphérische Trigonometric, ete. " Abhendiungeteler Kon.
Sdich. Gesellsehaft der Wiss. au Feiprig, XX, 1803, L

Muthematical Report to the Internationnl Congress f '{)_Qa;'&ﬁgo, 1893,

“ Mothematische Mitteilungen,” Verhandlungen dey I{m Séick. Cesell-
schoy? der Wiss, zu Leipriy, 1895, p. 532, N\

Y Bome Reserrches in Spherical Trigonometyy N\ Popers published by
The American Mathematival Sociery, 1, 18986, W BE2,

Mrs, Q. Crusmonm Yousa, Algebrai. ek { Gruppentheoretische Unters
suchungen guy sphivischen Trigono,. .erfﬁ'e‘,?é”dttiugen, 1843,

“ Sulle varietd vavionale normels M Ry rappreseniante della trigo.
Romeitria sfevica,” Aiti della R, JHceademin delle Sciense di Torino,
XXXV, 1808, p. 587. )

F. Krems, Vorlesungen gher die hypergeometrische Function, Got
tingen, 1894, p. 285 of seqy "

Voriesungen diber dié ichi- Eulbid sche Geometrie, (ittingen, 1508,
Vol I, p. 11; Vol A0Np. 169.

F. Mzevyer, “{ Résujtaménbegm:ﬂ' tn der sphirischen Trigonometrie,”
Crelle’s Journgl, &V, p. 209

*Die Besullpntenbildungen der Trigonometrie,” Jokseshoricht dor
Deut, ﬂr{qraﬁ. Fercinigung, IV, 1394-5, p. 92,
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grischen Dreioche,” Mitteitungen der Math. Cesell, in Hamburg, I,

L MSBT-8, p. 200,

e

R. ¥. MuIEHEAD, Proe, Edinburgh Math, Soc. 1894-5, p. 129.

BTEPHAYOS, ““Sur la relation qui ewiste entre lo problime de la trigo-
numdirie sphérique ef ln théorie du, systéme de trots formes biguadratiques
bingires,” Bulletin de In Sectérd mathématique de France, X, 1882,
p. 1345

Dziomex, *¢ Ucher cine Erwelteruny des Gauss'schen Pentagramm
smiriffeum auf ein beliekiges sphérischen Dreiech,” Crunert's Archit,
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CHAPTER XX,

APPLICATIONS OF DETERMINANTS TO SPHERICAL\:\
GEOMETRY. e\

N

333, Normal coordinates with respect to a frirgetangular
triangle. The use of the normal coordingtes withQ&épect to &
triangle, defined in Art. 162, renders possible(an’ analytical
method in spherical geometry analogous te’the methed of
trilinear coordinates in plane geometry. /"

For this purpose it is convenientto take as triangle of
reference a triangle whose three (sidés are quadrants, and
whose three angles are consequenyly right angles. A triangle
of this sort is called a troredlgngular friomgle ; its principal
properties have boen discysééd in Chapter XVIL In such a
triangle each corner igsthe pole of the opposite side; and
consequently the zym\}oining a corner to any point in the
opposite side is a-'\éluﬁdranb. I ABC be the triangle, P any

point on the splh‘e, and D, E, F the points where AP, BP, CP
intersect theypides (see figure of Art. 160), AP, BP, CP are
complemefitary to PD, PE, PF respoctively. Thus the normal
coordinatés of P, already defined as sin PD, sin PE, gin PF, are,
in thespresent instance, the same as cos AP, cos BP, cos OF, and
j':fﬁl e denoted by A, g, v as in Art. 272 The student of

:'\'.'Aﬁalytieal Solid Geometry will recognise in A u v the

" direction cosines of OP, referred to the rectangular axes OA,

0B, OC, where O is the centre of the sphere,

334, Fundamental properties of the coordiflates- Two
Properties of the normal coordinates of a point with respect %0
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a trirectangular triangle are fundamental, and will he used
constantly throughout the present chapter.

(1) If A, gy v be the coordinales of any point P,
AMtp?4=1 ..., (1)
(2 If X pyvand X, &, v be the coordinates aof any fwo poinis N
P and P, A\

AN+ pp’ +vv" = e0s PP’..‘.,‘,......‘.'“\f:??.b)

Proofs of these propositions have been given Ju “Articles
269 and 270, _ \

4

335. Assumption with regard to the triﬁ,‘rﬁ’le of reference.
In Chapters X and XIX we have found 1b necessary to make
@ convention as to the sense in whighDanples between ares on
the surface of the sphere arc to beaeekoned as positive, Such
& convention is equally necessary 11" the present chapter ; and
we must add to it the further hssumption that the triangle of
reference is such that a poin'ig' travelling from A to B, then from
‘B to G, and then from‘G:"t;fo' A, along the sides, gocs Tound the
triangle in the conventiohslly positive sense.

As before, we gelect as positive the semse which appoars
counter—c]ock'v\’@.ﬁ) an observer sitnated outside the sphere.

336. Comivention with regard to small circles. The
ambignity sthat attaches to the conception of a small eircle
has heen alluded to in Art. 201. An analytical treatment
{“bh"e eircle can only be rendered effective by making such

_{aronvention as will entirely remove this ambiguity.
287 A circle has two poles and, eorresponding to them, £wo
L) infinities of spherieal radii represented by o+ 2w, B+
\ ) where m and # may be any integers, and o, 8 represent the
least arcs joining & point on the eirele to the two poles. If
Wwe agree to exclude radii greater than = we have still two
poles, and two radii « and 8, supplements of one another.
To every circle, however, we shall assign arbitrarily 2
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certain direction or sense, in which it may be supposed to be
described.  That pole which would Iie to the left of a person
walking, on the outside of the sphere, along the circle in the
assigned direction is defined to be #e pole of the circle ; the

arc joining the pole 0 a point on the circle is defined to be

the rading ; and, of the two portions into whick the cirele .
divides tho surface of the sphere, that which contains the polé )
is called the inside of the circle, whethor it be greater or lass
than a hemisphere. N

In other words, the spherical radins of a small cifels may
have any value between zero and = ; hut the cimbeﬁg always
to be regarded as having been described, (oxeWEpt out), hy
& radius turning about the pole in the, eotinter-clockwise
sense ; and the direction in which the end of the radins moves
i8 the direction belonging to the eircla\)

Thus, when a direction has bean ‘assigned to a circle, the
polé is determined as lying to thewefs of that direction ; and,
eonversely, if the pole be assigned, the direction is determined
88 corresponding to = - cotmior-clockwise rotation round the
pole, - _

The reader whai’ﬁ}s studied the theorams relating_' to
coaxal and colupargystems of circles, discussed in Chapter X,
will find it intefesting to examine how far the scope of those
theoretns c—:ui'bé extended by the introduction of the con-
vention ofybhé present Article.

A& :

'%K\beﬁnition of spherieal tangent. By the sph_e?'iﬂafl
t@ljgerlt_ at 4 point on g small eircle is meant the great (?11‘013
(bhat has ordinary geometrieal contact with t_he. gmall circle,
f the direction assigned to the great civele being the same, at
the point of contact, as that assigned to the small circle, In
other words, if ¢ great circle and a small circle touch one
another, the pole of the small circle lies to the lefs of the great

circle, . S

o
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If the cireles have geometrical contact, but their directions
be such that the pole of the small circle lies to the right of
the great circle, the circles meet at an angle =, and are not
to be regarded as touching in the strict sense of the term.

In fact the only sort of contact contemplated in thes,
definition is what may be called infernal contact, the word,
“mternal” being used in a sense corresponding o\the
definition, given in the preceding Article, of the {inside”
of a circle. (‘.'}‘.

338. Angle of intersection of two circles.j\if two circles
A, B intersect in a point P, the angle betwgen’ the tangents to
the circles at P, measured in the positi}:t{xggnse of rotation from
the tangent to A to the tangent to{8/is called the angle of
intersection of the circles at the pm‘ﬁt P. Ag it Iy necessary to
choose one of the tangents as that from which the rotation
begins, account must he takep’{)f the order in which the cireles
ave named. In general ghg*circles, if they intersect at all,
will do so in two points, say P and @; and the angles of
interscetion at thesefvo points together make up .

Should it be dgé‘iﬁtbie to distinguish between the two angles
of infersectionfwe may do 50 by observing that at one of the
points of imberscction the circle A enters the eircle B, and the
circle Bysfpbrges from the eirele A ; at the other point the circle
A emgzped from the circle B, and the cirele B euters the circle
A. ("W shall agreo to apply the term *the angle of intersec:
\%ﬂ"of two circles” to the angle of intersection at that point

\Where the first circle emerges from the second,

When two circles tonch, their angle of intersection is zero.

If A, B be the poles of two circles, and P a point of inter-
section, the angle APB is equal to the angle of intersection.
Denoting this angle by ¢, and the radii by 7, 5, we get, by
applying the cosino formula to the triangle APB,

Sin 7 8in 5 COS b = €08 AB — COS 7 COB S.vrrs vvenenves (3)
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839, Mutual Power of two cireles. If A, B bo the poles,

and , s the spherical radii of two eircles, the expression
COSAB —cosreoss. . ... {4)
is ealled the mutuel power of the circles,

Geomstrical interpretation. When the eircles interseot, .
formuln (3) shews that their mutual power equals the produeiy \))
of the sines of their radii and the eosine of their angle ;(:)f
interssetion. P §

When the circles do not interséet, their mutnal pa}v'm;is not
susceptible of this geometrical interpretation. Tn syjecial cases -
other futerpretations ean bhe fonnd ; thus if the wséegvid circle be
& great circle, the mutusl power is cos AB, 3rhigh equals sinp,
whore p is the distance of the centrs of A § ofit the great circle,
measured inwards along a spherical rathub ; if both circles be
points, their mutual powor Is ~,2:sif12%AB ; if the second
tircle be u point, and  the lengfh® of the spherical tangent
from it to A, cos AR —cosy cod¥y and the mutual power is
~2cos rsin?ls, Ny '

The thoorems which f8llow ave, in several instances, ex
pressed in terms of thg“@nglcs of Interseetion of circles. They
held cqually well ‘J{ﬁéh some of the pairs of eircles do not
intersect, or wheh, some of the circles are points; but when
this is the casdd s necessary to express the theorems in terms
of spherical fowers instead of the non-existent angles of inter-
section, andthers will be correspondingly different geometrical
interpQ{cm'i nns,

2 S

«\'340- Let s, ¢, be twa cireles, whose spherical radii are r,, 7,
\and whose poles, C,. C, have for normal coordinates
oy Yomr B) AN (B ¥,y 2)
respectively, Then
cos Cmcn = Lo Ynlla + Zn

and consequently if P(mn} represent the mutual power,
Pnn) = 2,3, + 9,87, + 2y — €087, €08 v vvvvnee vueo(B)
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341, Theorem of the mutual powers. Let there he two
systems, each consisting of five circles, namely, s;, s, 85 8 8 and
&y §a &g 8 &5 and lob their radii, poles, ete, le represented
by a notation correspouding to that of the previous Article.

Form the product of the two vanishing determinants Q
0, 2, w 7, cosr |, 0, @y, ¥y ¥ —eosv i
0, @3 Yo 2 COST, 0, @y ¥y —cos‘rﬁ_,
!O, By Wy Fy COSTy 0, @y ¥y 7y L8 Ty
E‘O, By Y dy COSTY 0, ¥y ¥y 7y ASNeOR 1
10, @ s % cosry; |0, 25 ¢ Ap, T oost

and we get immediately the following imporfant result, first
given by Prof FroBEN1US:* "% \d

P(IT), P(1Z), P(I3QOP(4), PO5)

P(2L), P(2Z), PRI PY), P25 ;
P(31), P(32), R8s, P(3{), P(35)|=0 ..(6)
P41, PA2),JR(3), P(44), P(45)
P(31), P(BARS P(33), P(54), P(55)

342, If each cirél® of one system intersect all the circles of
the other systomy the angle of intersection of s, ¢, heing
representedy, by (mn’), we derive the following sheorem by
substituting.sin 7, sin r',cos (mn’) for P(mn’) :

NS
Ae03(11), eos(12), cos(137), cos(14), cos(1d)
\Meos(21), 00s(22'), cos(23'), cos(24'), cos{2d’)
7| c0s(31'), e0s(32'), cos(33), cos(34), cos(33) |=0 ..{T)
N | cos{41), eos(427, cos(43"), cos(44’), cos{4d)
~ Y ‘003(51’), cos(52%), cos(63"), cos(H4), cos(55)
A 343, Cases of orthogonal section JIf the first four circles
of the first system are cut orthogonally by the same circle @
and if we take o to be the fifth circle of the second system

* . FroBeNius, “dnwendungen der Determinantentheoric ouf die
Geometric des Maasses,” Crelic's Jourpal, LXXIX, 1875, p. 187. Bee,
however, Caviry, Comb. Math. Journad, II, 1841, p. 267, ot Collected
Works, Vol. I, p. L.
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the first four elements of the Jast column vanish in formulg,
(7). Hence we get the following relation between the angles
i which a system of four eircles, possessed of a common
orthogonal circle, are cut by any other four circles :

‘ cas (117), eos (12°), cos (13", cos{14) N
008 (21%), c0s (22}, c0s(2%), cos(24) 0 \(g)\
|cos (31'), cos(32'), cos(33"), cos(34) S\
ceos(41'), eos (42'), cos(43%), cos (44') | £

\
If o be the circle which cuts & 5y 8 orthog{{rﬂally, and if
o cut o’ orthogonally, o' may be taken as thefonrth eircle of
the first system. Then the first throe elémients of the last
row vauish in formula (8), and we get, fits Tollowing relation
between the angles of intersectiopydR two syatems of three
cireles, whose respective orthogonal direles cut ab right angles:

cos {117}, co,s:(iﬁ’), cos {13)
cos (21}, 809(22), €08 {23} |=0 cooerone.(9)
cos (31'), “eos (32), cos (337 ]

The condition that\c and o’ eut orthogonally is satisfied in
the foHowing caﬁ@é\:"
(1) Tf the 'c:ircles of the second system are coaxal; for, of
the infinjtéCiumber of circles which cut all the circles of a
coazal sspstem orthogonally, there is always one which is
ortggonial to another given circle such as o
. ‘@) If the poles of the three circles of the second system h'_a
AN Oh & great circle which passes through the pole of o-; for o’ i
N\ then this great circle,
‘ (3) If ¢ and the threc circles of the second aystem pass
throngh a common point ; for ¢ is then the common point.
{4} If the six circles of the two systems pass thrfnugh &
eommon poiut ; for o and ¢’ are both point circles having the
%ommon point for pole, and P{oo”) vanishes.
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344, Condition that three circles, whose poles are on a
great eircle, be coaxal. In case (1) of the previcus Article,
gince the circles orthogonal to a ccaxal system contain an
infinite number of pairs orthogonal to one another, it is
legitimate to make the second system of throe circles coincide
with the first. We thus get as the condition that three
circles, whose poles arc on a great circle, be coaxal | .\:\

sinZr;, P(12), P{13) O
P(21), sin?r, P{28)|-Omd i .. (10)
P(3L), P(32), siv, [
When the cireles eut, the mutual powe‘m"f@y he replaced by
cosines, and each of the leading elements by unity. The
resulting determinant has then fa-cl;olj&\)’f the form

thus @ EEIB2) = 2am, e 12)
where n ig zero or an integéi‘}’ The geometrical interpretation
will be appreciated omweRamination of different diagrams of
three circles passing ti[r’ough common points.

345. Circle eirtting three coaxal circles. As a particular
case of restle(9), we may suppose the three circles of the
first system to bo coaxal, and the first and second circles of
the sec\vﬁd system to coincide respectively with the first and
secofidh of the first system. We then get a relation between
thelangles ¢, ¢y $s at which any cirele s is cut by three

\gmaxal circles, s, g, 5, namely,
A\ -

1, cos{12), cosd, !
cos(21), 1, cosghy, |=0.0.000e- (13)
. e0s(31),  cos(32), cosdy

In this determinant the coefficient of cos ¢, is
c0s{32)cos{21) — cos(51),
which is equal to sin(32)sin(21), since (31)=(32)+(21)
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Removing the factor sin(12) from the complete expansion,
we reduce tho relation to the form

8in(23) cos ¢, + sin(31)cos ¢, + sin(12)cos dy=0....(14)

346, If the circle s of the provious Article be a point, we
use, instead of (13), the corresponding determinant with a
mutual powers. Remembering that the mutual power of & )
point and a eircle is - 2cosrsin?}r, when r is the Tengt
of the tangent from the point to the eircle, we get a élation
between the tangents from any point to three coaxaleircles,
namely, o)

| sin®ry,  P(12), cosr, sin®hr, 9\
P(21), sinr, cos 7, sinmy =10 .........(15)
| P(31), P(32), cospshitls,

If the point he on s, so that 7,=0, this relation expresses
the fact that the sines of the halves of the tangents from a
variable point on a circle to #%0 other circles coaxal with it
are in a constant ratio. (Sed Art. 177.)

347. Relations befwesn five circles. In the theorem of
the mutual power lq%fshe two sets of circles coincide. Then
it appears that a.n;"\ﬁve circles gatisfy the relation,

L sin@y,” P(12), P(13), P(14), P(15)

R(21), sin¥, P(23), P(24), P(25)
P31, P(32), sint, P(34), P(35)[=0..(16)

AN | P4, P(42), P(43), =in’r, P(45)

P(51), P(52), P(53), P(54), sin’y

N\ . Thus the condition that four cireles be cut orthogonally by
v/ afifth is
sinr;, P{12), P(13), P(14)
P(21), sin%r, P_(23)’ P{24) =0;.00...{17)
P(31), P(32), sinZ, P(34)
P(‘“): P(42): P(43)1 Sin?"”-i
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and the condition that four circles touch & fifth is (when they
intersect one another),

{0, sin®}(12), sin?} (13), sin?l(14)
sinl(21), 0, sm"f(’B), sin“L{24} 20 {1810
sin?} (31}, sin®3{32), O, sin2f(34) | 18

sin?}(41), sin®}(42), sin*4(43), 0 ~\«
. { \ .

348. Reciprocal Power of two circles. "The muiua? powef
of the reciprocals of the circles s, s, is clearly N\

cog C,C, —sin 7, sinr,...... ‘O
o\

or T T Youlle + 2,2, — 81N ¥, gi0%,)
We shall cali this the reciprocal power nf\Lhe cireles &, &, and
denote it by R{mm).

If the circles have a spherical) eo%mon tangent of length
[mn], we find, on applicafion of.. the cosine formula. to the
triangle whose vertices are the Ypoles of the sircles and of the
tangent, that & ™|

N

R{mn) €08 7., 087, 08 [, ..eovvrirrnins (21)

- 349, Theorem of\the reciprocal powers. Take two sets of
five circles, andg aultiply together the vanighing determinants
{0; Ly Vo S sinr), (0, @', ¥y, &, —sing'y)

There rps;ults the following theorem, analogous to that of
Fﬁom"mu

NYIR(T), R2Y RO13Y, R(14), R(15)
AN IR(T), R(22), R(23), R(24), R(25)
N R(3L), R(32), R(3¥), R(34), R(35)|-0. (32)
O R(11), R(42), R(43), R(44), R(45)]
" R(31), R(2), R(53), R(L), R(5)|

350. The particular cases of this theorem correspond exnctly
to the particular cases of FropExTUs's theorem, which have
been discussed in the preceding Articles; they arc arrived ab by
analogons processes, and the forms in which they are stated
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are deduced by substituting R for P. The geometrical inter-
pretations, however, are different : for the angles of intersection
in the one set of theorems are represonted by lengths of
common tangents in the other.

The theorems derived by reciprocal powers are, in fact, the
reciprocals of the theorems derived by mutual powers.  For
example, It we substitute R for P thronghout formula (10} of\:\
Art. 344, and cosines for sines in the leading elements, we Eob
the condition that three circles whose poles are on g,,gréab
¢irele should be colunar; and, corresponding to the stheorems
of Arts. 345, 346, we get properties of colunar circles

Again the condition of Art. 347, that four eircles should be
touched hy a fifth, would, if derived from the reciprocal power
theorem, appear as an cxpression precisely lilte thet in formula
{18} in the squared sines of the halvesd{ $he cormon tangents.
Dr. CASEY* points out that the condbtadn is equivalent to

>

#in {23 sin 1[14] £ sin 151y sih 3[24]
*sin F42] «in L[34]=0...0vven.nenn. (23)
From this result TTarrs théorem may he deduced,

351, Four points add four circles. If 8y, 8y 83 §; be point
circles, the sines Q‘lei’r radii vanish ; consequently the deter-
minant (), y, %, sinr,) vanishes. Mnltiplying it by the
determinant T g 2y — s8I0 7',), we get the following relation
between foflty points and four circles, wherein the reciprocal
PO“’UI‘S'.:{L:,Q E‘eplaced by cosines of tangents drawn from the
Poing\tg ‘the circles :

O feos[117, cos[127, cos[137], cos[14)

e N | cos{217], cos[227], cos[237, cos[24] =O...(24j

cos[31), cos[32], cos[337], cos[34]

c0s[41], cos[42], cos[43], cos[44]
- .
* Proceeding of the Royal Irish Academy, IX, 1866, p. 396. Cp.
D"‘RBOEX, Annales de U Eeole Normale, 2nd series, Vol 11, 1872, p. 347,_

- and Frosex1US, fog. cif,, p. 207,



270 SPHERICAL TRIGONOMETRY. T§352

352, Relation between the arcs joining four points. In
this result let s, &, &, &, coincide with the points s, 8,
8y 8 The formula then hecomes a relation between the
ares joining any four points on the spherc. If three of the
points be the corners of a triangle ABC, and if the arcs joining .
them to the fourth point be «, 5, 7, the relation is \

1, cosc, Ccosb, cose Oy
cose, 1, cosg, cospf -0 s O (25)
cosh, cosa, 1, eosy | ANV
coso, cosf, cosy, 1 LD

&
or I sin’a cos?a + 22 (cos b cos ¢ — cos a)cos 3 co?:;;— dn? =0, (26)

When A, B, Care on a great circle, the sine of tho triangle
ABC vanishes; also sin(aib:‘:c)=Q,<a;nd the left hand side
becomes the square of Zsinacefe) Thus we obtain the

theorem of Art. 145. A

353. The theorem of AytA165 is also a particular case of
relation (24). To obtaiﬁfit’we make s, and s coincide with
the point A, s, and ${with B, s, and &, with C, s, with O, and
§, with P, o)

354. The .p%s\ent Chapter, based to a considerable extent
on the memeir quoted in the foot-note to Art. 341, eontains
only a fé@? of the mere elementary of the numerous theorems
Whic@':}l}e obtained by the method of FROBENIUS. The
voader who is interested in the subject should consult the

\original memoir, also Dr, Casky's paper referred to in Art.

/%350, and a paper by Dr. R. LacHLAN in the Philosophisab

/70N

\‘:

Transactions of the Royal Society, Vol. 177, 1886.
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Affection, angles of the same, 49,

ARy, 53, 184,

ALBATEGNIUS, 24.

Abmagest of Provzvy, 19,

Altitude of a triangle, 109,

Ambiguons cases in solution of
oblijue-angled triangles, 75-85,

Ambigucus case in solntion of
right-angled {riangles, 58.

Angle of & sphorical triangle, 8.

definition, 242, A

Angle of a triangle, restr@ions
upon, 11, 240258, ()

Angle of intersection b{\b\fo greab
cireles, 3. O\

Angle of intergeetinf’of two small
tircles, 2620\

Antipodal triangles, 12, 98,

Appro ‘m@é solution of trisngles,
17:5{%1-183.

ARchiMznEs, 2,

A8 of o triangle, 07

\; Wreal coordinates, apslognes of,
125.

Assoctated triangles, 90,

Axial eentre, 139, 158,

Axig of 5 circle, 2,

Bavtzzr, 115, 155, 2297238, 756,
BrrrayD, 234 e\
Bisector of an anglg\of & triangle,
112, \

BORGNET, 1,9."\\"
Bromwiom,\183, 223,
Caguons, 43, 59, 99,
GA’QN(}LI’S theorem, 99.

. }C“ARNUT, 24, 213,

Angle of o trisngle, extended  Casry, 103, 125, 128, 143, 165, 269,

Carapax, 234

Canomy, 234,

CavcuY's theorems concerning
polyhedrons, 230, 231, 233,

Cavavrerr, 97

Centre, axial, 139, 158,

Contre, lunar, 158.

Centre of Harr's eircle, 167,

Cevs’s theorem, analogne of, 124

CHA9SLER, 19,

CmaTvEXET, 19, 30, 240, 256,

Chordal trisngle, 172, 188.

Clircle, circumseribed, 80, 91.

Circle, eseribed, 83, 90,

Clirele, great, 2, 6.

Cirole, ingeribed, 88, 89.

Circle, small, 2,
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Circle, small, conventions regard-
ing, 260,

Cireular parts, Narice’s rules of,
49.54,

Circum-civcle, 9, 91,

Crare's Geodesy, 29, 89, 177,
181, 182, 186.

Coaxal circles, 133-143, 158.161,
266, viii.

Colunar eireles, 157-161, 269, viii,

Concurrency, 192, 123, 125,

Congruent triangles, 16.

Contact of small circles, 262.

Coordinates, areal, 125.

Coordinates, normal, 125.

Coordinates, volumetrie, 125, 127.

Corners, different triangles havi ing
same, 243-249. N\

Cosine formuls,
250, LN

Cotangent formula, 26, T;élj,”%l.

Crorroyw, 37. &

Cyclic gpherical quadhla,teml 132.

Darry, 1589, \\

Dmﬁoux,,?ﬁ!};

Daviks)58, /189,

DE Ggh, 104,

Drratsng, 36, 54, 188, 256,

mﬁ AMBRE'S analogies, 36, 37, 251-
204

8 :' e Moreaw, 54, 229,

Determinants, use of, 259-270.

Direction cosines, 259.

Duality of thcorems relating to
circles, 148-161.

Duality of theorems relating to
the spherical friangle, 14

DzioBEE, 258,

21, 24, 41, 2403

Elements of the spherical triangle,
20

Elements of the trisngle, cxtended
definition, 242,

EiLs, 53,

Equation to small cirele on sphergy
201, ¢\

Essew, 37 S\

HorzEr, 19, 24, 28, 103, s, 230,
224, 238, R

Bverest, 186. 27
Hrcess, spheué\ 48, 99,
Hxcess, é.phenca.l calenlation of,

| 052,@;

Fgu}a {;f the earth, 193

{Folr points, relation among arcs
&

joining, 215,
Frosrxiva, 264, 269, 270.
FroBEFI10:'s theorom, 264.
Fundamental fornulae proved for
generaliged triangle, 249-251.

(Garisg, 10, 24, 29, 36, 45, 99, 148,
143, 172, 176, 177.

(Generalisation of the triangle, 19
240-258,

GrrT's proof of LAIurLIER’s theo-
rem, 101,

Geodesy, 186-194,

GIrArD, 19, 97

GIRARD’S theorem, 7.

Group-theory, references to, 234,
238,

CupErMany, 18, 37, 92, 103, 110,
119, 125, 121, 135, 145, 238

Harmonie range, 146.
Harr, 162.
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Harr's cirele, 162-170, 289.
Hart's cirele, radiug of, 164.
Haverzine, (8.

Hrrparcavs, 18,

Historieal note, 18,

Tdentizal equality of triangles,
i8.

Inegualities satisficd by elements
of a triangle, 14, 15, 247-249,

Inmaw’s Neutical Tables, 68,

JoscHIMsTHAT, 238,
Kuoew’s theorem, 119,
Kirgaaw, 234,

Evkry, 234, 258,

Lacuray, 270,

Lierawar, 10, 24, 103, N

Leomrore, 19, 101, 103, 120,172
230, 234, Q

LicRyDRe’s theorem, 15727 x\

Leewxpaes theorcm,\@\ré’r due to
use of, 179-181. N\

Lesexvre's thedrem,
Geodeay, 188.%

Lexein, 19989, 88, 92, 99, 118,
132, 122, &

LEﬂl'g\Qs’locus, 118, 119, 154,

L'Biags, 101.

nse  jun

R Etis Aol theorem, 101, 257,
\ i“huilieria.n, 102,

L?miting circles, 150,

Limiting points, 139, 159,
Listing, 234,

LOga.rithmic calenlation, 54, 60,
Loverr, 53

Ll.me. 1

I

1 MenrExs, 172,
| MEevER, 252,

v

Lune, area of, 96.
Lunar centre, 158.

Meximum triangle having two
sides given, 120, 155.
Mean centre, spherical, 125,
Median of a triangle, 112, A\
MryeLavs, 18, 25, 122, 128, B
MErELATS' theorem, analogve of,
127, y

't ¥ i

"

Mosrus, 19, 148\240.
MoLLweing, 36."”
MoRGANJENEINS, 45,
Mumaesp, 258.

Mu{;uhl bower of two circles, 263,

JoNarree, 19, 84, 50, 51, B2,
"Napmrr’s snalogies, 34, 33, 37, 254,

Narier’s Rules of Circular Parts,
49-54,

NEunERg, 29

Nine-points circle, analogous ta
Harr's circle, 169,

Norm: of the angles, 29, 53.

Norm of the aides, 29,

Normal coordinates, 1235,

Normal coordinates with respect
to a trirectangular triaugle, 259,

Ordnance servey, 186-189,
Orthogonal section of sinall circles,
284,

1 Parallolepiped, length of diagonal,

212
Parallelepiped, volume of, £11.

| Parallelogram, spherical, 238, 239.
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Fadius of Hanr’s cirele, 164
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Plane Trigonometry, mcthod of
deriving formulse from those of
Spherical Trigonometry, 200,

FPorwszor, 233, 234

Polar great circle of a point, 149

Polar triangle, 12, 149, 242,

Poles of a circle, 2, 148, 260,

Polygon, spherieal, area of, 93.

Polygons, spherical, theorems con-
cerning, 122,

Polyhedrons, 207-227, 230-234,

Tolyhedrous, regular, 208, 233,

Power, mutnal, 263,

Power, reciprocal, 263,

Power, spherical, 133,

Projection, formulas of triangle ,

proved by, 29.

Proper and improper trlancles,.Z-J-Tr e

Prouner, 107. A

ProuHEr's proof of GAQNDLIS
theorem, 103, .

ProLewy, 19,

PToLEMY'S theo;-em\l 36.

Fusp, 53, QOB\\

Quadra.;{h‘a]l"ﬁ:iangle, 67,

Raliga! circle, 138, 158.

Radius, spherical, of a sircle, 3
261.

RAPER'S Proctice of Nawvigation,
63.

Rectprocal curves, 150,

Reciprocal powser of fwo circles,
268,

Reciproesl
the, 268.

Reciprocation, 148,

powers, theorem of

7

Reciprocation of chords and fan.
gents, 130,

Reducing an angle to the horizon,
184, A

Rrecronmoxravus, 19,

Ryetot, 40, 63, 78, 79, { ‘\

Rrinr's analogies, 40, .«“{

Restrictions on the elements of a
spherical trimw}c;} 14, 11, 19,
240258, N

Rov’srule f@x‘oa}’culatmg, spherical
excess, 189/

SALlib}; 1G5,
SeRpENYLIE, 234,
Setrorz, 19, 102, 125, 148, 150,

“Becondaries of a great circle, 8,

Semi-harmonie range, 147.

Sense of rotation on a sphere, ML

BERRET, 40.

Sides of a spherical triangle, 8.

Sides of a spherical friangle, ex
tended definition of, 242

Sidea of a iriangle, restrietions o
10, 19, 240-258,

Similitade, centre of, 158,

Sine formula, 25, 251,

Sine of a triangle, 20.

SvmrLiTs, 12, 19,

SorLiy, 154,

Sphere, definition and properties
of, 1-7.

Spherieal excess, 98, 99.

Spherical excess, approxlmate
value of, 176.

Spherieal execss, caleulation ofs
105, 183,

Gpherical excess, geometrical re:
presentation of, 116.
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Bpherieal polygon, arca of, 98.
Spherical power, 133,

v, STaUDT, 20,

STRIVER, 119,

SrrEANOs, 258,

STUDY, 241, 258,

Superposition of triangles, 16.

Supplemental #riangles, 14, 33,
152, )

Symmetricul equality of triangles,
18,

Tangents, common, to two aireles,
143-145,

Tungent, spherical, to a small
eirele, 261.

Tofrahedron, volume of, 29, 212,
214,

Transverss], spherical, 127,

Triangle, approximate solution of, ¢

175, 181-183, N\

Triangle, isosccles, solntion of N7

Triangle, oblique- rmgled aQlution
of, 67-86, \/

Triangle, quadrantal, 67.

Triangle, right-angled, 46.48.

Triangle, right-sngled, solution of,
54.66.

Triangle, spherical, 8, 151,

Triangle, spherical, extended de-.o.
finition of, 241, (W \

Trilinear coordinates, ana.]ogy@
of, 124,

Trirectangular tnangle, ‘218§227,
259, \

Types of triangle, sikteen, 240249,

Varlations, smiall} in elements of
a triangle, 495-199,
VIETA, 10N,

anurhet»mc coordinates, 125, 127,
er HSTRASS, 223,

WHITE, 186,

WoonHouss, 53, 190,

Youwe, Mrs, G, Cumsnoum, 258,
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